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ON THE EXISTENCE OF INFINITE ENERGY SOLUTIONS
FOR NONLINEAR SCHRÖDINGER EQUATIONS

PABLO BRAZ E SILVA, LUCAS C. F. FERREIRA, AND ELDER J. VILLAMIZAR-ROA

(Communicated by Hart F. Smith)

Abstract. We derive new results about existence and uniqueness of local and

global solutions for the nonlinear Schrödinger equation, including self-similar
solutions. Our analysis is performed in the framework of weak-Lp spaces.

1. Introduction

We consider the nonlinear Schrödinger equations

i∂tu + ∆u = λ|u|ρu, x ∈ R
n, t ∈ R,(1.1)

u(0, x) = φ(x), x ∈ R
n,(1.2)

where u = u(t, x) is a complex-valued function, λ is a fixed complex number, and
0 < ρ < ∞. The initial value φ : Rn → C is given. The Cauchy problem (1.1)-(1.2)
is formally equivalent to the integral equation

(1.3) u(t) = S(t)φ − iλ

∫ t

0

S(t − s)(|u(s)|ρu(s))ds,

where S(t) is the unitary group determined by the linear Schrödinger equation

∂tu − i∆u = 0, x ∈ R
n, t ∈ R.

If φ ∈ S(Rn) and u is defined by û(t)(ξ) = e−i|ξ|2tφ̂(ξ), for ξ ∈ Rn, then

ût + i|ξ|2û = 0

in R × Rn. In this case, the solution of

∂tu − i∆u = 0, x ∈ R
n, t ∈ R,(1.4)

u(0, x) = φ(x), x ∈ R
n,(1.5)

is given by u(t) = S(t)φ = Kt ∗ φ, where Kt(x) =
(
e−i|ξ|2t

)̌
.

The existence and uniqueness of local and global solutions of problem (1.1)-(1.2)
have been much studied in the framework of the Sobolev spaces Hs, s ≥ 0; i.e., the
solutions and their derivatives have finite energy in the sense that they have finite
L2-norm. See, for instance, [3, 4, 5, 9, 10, 11, 12, 13], and the references therein.
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As far as we know, the first authors to study infinite energy solutions of (1.1)-
(1.2) were Cazenave and Weissler in [6]. There, they consider the space

Xρ = {u ∈ L∞
loc((0,∞), Lρ+2(Rn)) | sup

t>0
t

α
2 ‖u(t)‖Lρ+2 < ∞},

where α
2 = 1

ρ − n
2(ρ+2) and ‖ · ‖Lρ+2 denotes the usual Lρ+2 norm. Under a suitable

smallness condition on the initial data, they prove the existence of global solutions
of (1.1)-(1.2) in Xρ, for ρ in the range

(1.6)
ρ + 2
ρ + 1

<
nρ

2
< ρ + 2.

If n = 1 or n = 2, condition (1.6) is equivalent to ρ0 < ρ < ∞, where ρ0 is the
positive value of ρ for which ρ+2

ρ+1 = nρ
2 . If n ≥ 3, it is equivalent to ρ0 < ρ < 4

n−2 .
Later on, in [2], the Cauchy problem (1.1)-(1.2) was studied in the framework of
weak-Lp spaces. Using a Strichartz-type inequality, the authors obtained existence
of solutions in the class L(p,∞)(Rn+1) ≡ L

(p,∞)
t

(
L

(p,∞)
x

)
, where (t, x) ∈ R × Rn

and p = ρ(n+2)
2 , for ρ in the range

(1.7) ρ0 <
4(n + 1)
n(n + 2)

< ρ <
4(n + 1)

n2
<

4
n − 2

.

In [15], the existence of solutions with initial data in the Besov space Ḃ
sρ,∞
2 (Rn),

with positive regularity sρ = n
2 − 2

ρ > 0, was proved for ρ in the range ρ0 < 4
n <

ρ < ∞. Note that if f ∈ Ḃ
sρ,∞
2 (Rn), then f has at least local finite energy.

We study equation (1.3) in functional spaces of infinite energy. In the first
theorem proved here, we consider the initial data φ belonging to the Marcinkiewicz
space L( ρ+2

ρ+1 ,∞) and show existence and uniqueness of local in time solutions in the
class

ET
α,β =

{
u | ‖u‖α,β = sup

−T<t<T
|t|

α−β
2 ‖u(t)‖(ρ+2,∞) < ∞

}
,

where (α−β)
2 = nρ

2(ρ+2) , with nρ
2 < ρ+2

ρ+1 . Note that nρ
2 < ρ+2

ρ+1 is equivalent to
0 < ρ < ρ0 < 4

n . So, our range for ρ is different from the ones in [6, 2, 15]. The
norm ‖ · ‖α,β is not invariant by the scaling uµ(t, x) = µ

2
ρ u(µ2t, µx). This is a key

point to obtain local in time solutions in Marcinkiewicz spaces. It is also worth
noting that our result allows one to consider singular initial data as, for example,
homogeneous functions |x|−

n(ρ+1)
ρ+2 ∈ L( ρ+2

ρ+1 ,∞).
Our second theorem concerns global in time solutions. We show existence of

such solutions in norms of type sup|t|>0 |t|α/2‖u(t)‖L(ρ+2,∞) , where α
2 = 1

ρ − n
2(ρ+2)

and

(1.8) ρ0 < ρ <
4

n − 2
.

This extends the result of Cazenave and Weissler [6] to the context of Lorentz
spaces. Note that range (1.8) is greater than range (1.7).

As a corollary, we show that when the initial data φ is a homogeneous function of
degree − 2

ρ , we obtain a self-similar solution if ‖S(1)φ‖(ρ+2,∞) is sufficiently small.
Moreover, we discuss asymptotic stability of the global solutions and show that
regular perturbations of the linear Schrödinger equations are negligible for large
times. We also analyze the behavior of the local solutions as t → 0 in L(ρ+2,∞).
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Our approach is different from the methods used in [2, 15], where the authors
use a Strichartz-type inequality in weak-Lp and Besov spaces, respectively. Indeed,
our existence results are based on bounds for the Schrödinger linear group S(t) in
the context of Lorentz spaces. In Lemma 2.1, we state and prove these bounds via
real interpolation techniques. They generalize the bounds for the usual Lp spaces
used in [6].

In section 2, we carefully state our results and discuss their improvement in the
light of previous results. We prove them in section 3.

2. Main results

We first recall some facts about interpolation in Lorentz spaces. For more prop-
erties and details about these spaces see, for instance, [1] and [16]. The Lorentz
spaces L(p,q)(Rn) can be constructed via real interpolation. Indeed, L(p,q)(Rn) =
(L1(Rn), L∞(Rn))1− 1

p ,q, 1 < p < ∞. They have the interpolation property

(L(p0,q0)(Rn), L(p1,q1)(Rn))θ,q = L(p,q)(Rn),

provided 0 < p0 < p1 < ∞, 0 < θ < 1, 1
p = 1−θ

p0
+ θ

p1
, 1 ≤ q0, q1, q ≤ ∞, where

(·, ·)θ,q stands for the real interpolation spaces constructed via the K-method [1].
The spaces L(p,∞) are called either weak-Lp or Marcinkiewicz spaces.

We begin by bounding the Schrödinger group S(t) in Lorentz spaces.

Lemma 2.1. Let 1 ≤ d ≤ ∞, and 1 < p < 2. If p′ is such that 1
p + 1

p′ = 1, then
there exists a constant C = C(n, p) > 0 such that

(2.1) ‖S(t)ϕ‖(p′,d) ≤ C|t|−
n
2 ( 2

p−1) ‖ϕ‖(p,d) ,

for all ϕ ∈ L(p,d)(Rn) and all t 	= 0.

Proof. Fix t 	= 0 and let 1 < p0 < p < p1 < 2 such that 1
p′ = λ

p0
+ 1−λ

p1
and

0 < λ < 1. By the well-known Lp = L(p,p) estimate of the Schrödinger group, we
have S(t) : Lp0 → Lp′

0 and S(t) : Lp1 → Lp′
1 , with operator norms bounded by

‖S(t)‖p0→p′
0
≤ C|t|−

n
2 ( 2

p0
−1), ‖S(t)‖p1→p′

1
≤ C|t|−

n
2 ( 2

p1
−1).

Through real interpolation,

‖S(t)‖(p,d)→(p′,d) ≤ ‖S(t)‖λ
p0→p′

0
‖S(t)‖1−λ

p1→p′
1

≤
(
C|t|−

n
2 ( 2

p0
−1)

)λ (
C|t|−

n
2 ( 2

p1
−1)

)1−λ

= C|t|−
n
2 ( 2

p−1),

which is equivalent to (2.1). �

From now on, we denote α :=
2
ρ
− n

ρ + 2
and β :=

2
ρ
− n(ρ + 1)

(ρ + 2)
.

Definition 2.2. Let 0 < ρ < ∞ and 0 < T ≤ ∞. We denote by Eα and ET
α,β the

Banach spaces

Eα =
{

u | |t|
α
2 u ∈ BC((−∞,∞); L(ρ+2,∞))

}
,(2.2)

ET
α,β =

{
u | |t|

α−β
2 u ∈ BC((−T, T ); L(ρ+2,∞))

}
,(2.3)
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with respective norms

‖u‖α = sup
−∞<t<∞

|t|
α
2 ‖u(t)‖(ρ+2,∞), ‖u‖α,β = sup

−T<t<T
|t|

α−β
2 ‖u(t)‖(ρ+2,∞),

which are weakly continuous in the sense of distributions at t = 0.

Definition 2.3. Let 0 < T ≤ ∞. A mild solution of the initial value problem (1.1)-
(1.2) in the space ET

α,β (respectively, in the space Eα) is a complex-valued function
u∈ET

α,β (respectively, u ∈ Eα) satisfying equation (1.3) for all 0 < |t| < T , such
that u(t) ⇀ φ when t → 0 in the sense of distributions.

Our main results are

Theorem 2.4 (Local in time solutions). Let 0 < ρ < ∞ and
nρ

2
<

ρ + 2
ρ + 1

.

(1) If φ ∈ L( ρ+2
ρ+1 ,∞), then there exists 0 < T < ∞ such that the initial value

problem (1.1)-(1.2) has a unique mild solution u(t, x) ∈ ET
α,β, with T =

T (φ) = C ‖φ‖−
ρ
δ

( ρ+2
ρ+1 ,∞)

, where δ = 1 − α−β
2 (ρ + 1) > 0.

(2) Moreover, if φn ∈ L( ρ+2
ρ+1 ,∞) is a sequence of functions satisfying φn → φ in

L( ρ+2
ρ+1 ,∞), then there exists 0 < T0 < ∞ and n0 ∈ N such that, for n ≥ n0,

the solutions un and u with respective initial data φn and φ lie in ET0
α,β and

un → u in ET0
α,β. Actually, the solution map φ 
→ u is Lipschitz continuous.

Theorem 2.5 (Global in time solutions). Let 0 < ρ < ∞ and
ρ + 2
ρ + 1

<
nρ

2
< ρ+2.

(1) If φ is a distribution such that sup−∞<t<∞ |t|α
2 ‖S(t)φ‖(ρ+2,∞) < ε, for

ε > 0 small enough, then problem (1.1)-(1.2) has a global in time mild
solution u(t, x) ∈ Eα. This solution is the only one satisfying ‖u‖α ≤ 2ε.

(2) Furthermore, if (φn) is a sequence of distributions such that ‖S(t)φn −
S(t)φ‖Eα

→ 0 when n → ∞, and un, u are the solutions with respective
initial data φn and φ, then un → u in Eα.

We compare the theorems above with previous results.
• In [6], the existence of solutions in spaces of infinite energy was obtained for

ρ0 < ρ < 4
n−2 , where ρ0 is the value of ρ for which ρ+2

ρ+1 = nρ
2 . In [2], using

Strichartz-type inequalities, the existence of global solutions in the class
L(p,∞)(Rn+1) ≡ L

(p,∞)
t

(
L

(p,∞)
x

)
was established, where p = ρ(n+2)

2 and

ρ0 < 4(n+1)
n(n+2) < ρ < 4(n+1)

n2 . So, Theorem 2.4 extends the set of exponents ρ

where such solutions exist by including the interval 0 < ρ < ρ0.
• In the range ρ0 < ρ < 4

n−2 , Theorem 2.5 extends the global solutions results
derived in [6] to the framework of Marcinkiewicz spaces. Our range for ρ is
also greater than the one in [2] (see (1.7)).

• Theorem 2.4 assures the existence of local in time solutions even for sin-
gular initial data φ(x) = Pk(x) |x|−k−n(ρ+1)

ρ+2 ∈ L( ρ+2
ρ+1 ,∞), where Pk(x) is a

homogeneous polynomial of degree k. As far as we know, there were no
previous existence results covering this case. On the other hand, we were
not able to obtain self-similar solutions in Eα,β though, since the norm
‖ · ‖α,β is not invariant by the scaling relation uµ(t, x) = µ

2
ρ u(µ2t, µx).
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• In [7, 14, 17], there are results for Schrödinger type equations in various
energy spaces, different than the ones considered here, through diverse ap-
proaches. In particular, in [7] local weak solutions for problem (1.1)-(1.2),
n = 1, ρ = 2, were studied in Sobolev spaces Hs, for s negative but close
to 0. In [14], the authors have studied a Schrödinger equation with a non-
linear term involving derivatives, assuming periodic initial data satisfying∥∥∥(1 + ξ2)s/2φ̂

∥∥∥
lpξ

< ∞ with positive regularity s ≥ 1/2 and p ∈ (2, 4). In

[17], the authors have gotten solutions for problem (1.1)-(1.2), with n = 1,
ρ = 2, and initial data satisfying ‖S(t)φ‖L3((−T,T );L6) < ∞. Results of the
type L2 − Hs are related to those derived in [6, 2, 15] for more general
spaces, such as Besov, Lp, and weak-Lp. In our case, when ρ0 < ρ < 4

n−2 ,
if one takes initial data φ ∈ H1, then, since

‖S(t)φ‖(ρ+2,∞) ≤ C‖S(t)φ‖H1 = C‖φ‖H1 ,

there exists T0 > 0 such that the unique global small solution belongs to
the class C([−T0, T0]; H1(Rn)).

As a direct consequence of Theorem 2.5, one can show the existence of a self-similar
solution.

Corollary 2.6 (Self-similar solutions). In addition to the hypothesis of Theorem
2.5, if the initial data φ is a sufficiently small homogeneous function of degree − 2

ρ ,
then the solution u(t, x) provided by Theorem 2.5 is self-similar, that is, u(t, x) =
µ

2
ρ u(µ2t, µx) for all µ > 0, almost everywhere for x ∈ Rn and t > 0.

Remark 2.7. Let Pk(x) be a homogeneous polynomial of degree k. The set of
functions φ which are finite linear combinations of functions of the form Pk(x)

|x|k+ 2
ρ

is

an admissible class for the existence of self-similar solutions for problem (1.1)-(1.2).

We also analyze the large time behaviour of the solutions given by Theorem 2.5
and study the behaviour of the solutions given in Theorem 2.4 near to time t = 0.
These are the content of the following theorem.

Theorem 2.8. (1) (Asymptotic stability) Suppose 0 ≤ h < 1 − α
2 (ρ + 1),

and let u, v ∈ Eα be two global solutions of problem (1.1)-(1.2) obtained
through Theorem 2.5, corresponding to respective initial conditions φ, ϕ. If
lim

|t|→∞
|t|

α
2 +h ‖S(t)(φ − ϕ)‖(ρ+2,∞) = 0, then

(2.4) lim
|t|→∞

|t|
α
2 +h ‖u(t) − v(t)‖(ρ+2,∞) = 0.

(2) (Decay rate as t → 0) Suppose δ = 1 − α−β
2 (ρ + 1) > 0, and h > −δ .

Let u, v ∈ Eα,β be two local solutions of (1.1)-(1.2) obtained through The-
orem 2.4, corresponding to initial conditions φ, ϕ ∈ L( ρ+2

ρ+1 ,∞), respectively.
If lim

t→0
|t|

α−β
2 −h ‖S(t)(φ − ϕ)‖(ρ+2,∞) = 0, then

(2.5) lim
t→0

|t|
α−β

2 −h ‖u(t) − v(t)‖(ρ+2,∞) = 0.

Let us comment on some improvements produced by Theorem 2.8.
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• (Asymptotic stability) Theorem 2.5 already gives

sup
|t|>0

|t|
α
2 ‖u(t) − v(t)‖(ρ+2,∞) < ∞.

Thus, it is obvious that estimate (2.4) holds for h < 0. On the other
hand, the first item in Theorem 2.8 extends this property for the range
0 ≤ h < 1− α

2 (ρ + 1). However, more regularity on the initial perturbation

φ−ϕ is required. For instance, assuming (in addition) that φ−ϕ ∈ L( ρ+2
ρ+1 ,∞),

one obtains

lim
|t|→∞

|t|h+ α
2 ‖S(t)(φ − ϕ)‖(ρ+2,∞) = ‖φ − ϕ‖( ρ+2

ρ+1 ,∞) lim
|t|→∞

|t|h+β/2 = 0,

with 0 ≤ h < −β
2 . Observe that −β

2 = 1−α
2 (ρ+1) > 0, when ρ0 < ρ < 4

n−2 .

• (Decay rate when t → 0) By bound (3.2), one can see that

|t|
α−β

2 −h ‖u(t) − v(t)‖(ρ+2,∞) ≤ |t|
α−β

2 −h ‖S(t)(φ − ϕ)‖(ρ+2,∞) + C |t|δ−h ,

which implies the bound (2.5) for h < δ. Assuming further regularity for
φ − ϕ, the second item of Theorem 2.8 extends this property for the range
h > −δ.

• In Theorem 2.8, if one assumes the stronger hypothesis

lim
|t|→∞

|t|
α
2 +h ‖S(t)(φ − ϕ)‖Lρ+2 = 0,

then using the existence theorem of [6] and arguing as in the proof of the
first part of Theorem 2.8, one can show that

(2.6) lim
|t|→∞

|t|
α
2 +h ‖u(t) − v(t)‖Lρ+2 = 0.

• In [6], assuming φ − ϕ ∈ L
ρ+2
ρ+1 (Rn) and 0 ≤ h < 1 − α

2 (ρ + 1), the authors
obtained that ‖u(t) − v(t)‖Lρ+2 = O(t−( α

2 +h)). Inequality (2.6) is sharper,
i.e., ‖u(t) − v(t)‖Lρ+2 = o(t−( α

2 +h)).

3. Proofs

The following lemma is important to our ends. For its proof, see [8].

Lemma 3.1. Let 0 < ρ < ∞ and let X be a Banach space with norm ‖ ·‖. Suppose
B : X → X to be a map satisfying

(3.1) ‖B(x) − B(z)‖ ≤ K‖x − z‖ (‖x‖ρ + ‖z‖ρ) ,

B(0) = 0, and let R > 0 be the unique positive root of equation 2ρ+1K(R)ρ −1 = 0.
Given 0 < ε < R and y ∈ X, y 	= 0, such that ‖y‖ ≤ ε, there exists a solution
x ∈ X for the equation x = y + B(x) such that ‖x‖ ≤ 2ε. The solution x is unique
in the ball B2ε := B(0, 2ε). Moreover, the solution depends continuously on y in the
following sense: If ‖ỹ‖ ≤ ε, x̃ = ỹ + B(x̃), and ‖x̃‖ ≤ 2ε, then

‖x − x̃‖ ≤ 1
1 − 2ρ+1Kερ

‖y − ỹ‖.

Now, we state and prove the necessary estimates in order to apply Lemma 3.1
in our case.
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Lemma 3.2. Let 0 < ρ < ∞ and B be defined as

B(u) = −iλ

∫ t

0

S(t − s)(|u(s)|ρu(s))ds.

If
nρ

2
<

ρ + 2
ρ + 1

, then there exists a positive constant Kα,β such that

(3.2) ‖B(u) − B(v)‖α,β ≤ Kα,βT 1− (α−β)(ρ+1)
2 ‖u − v‖α,β

(
‖u‖ρ

α,β + ‖v‖ρ
α,β

)
,

for all u, v ∈ET
α,β. On the other hand, if

ρ + 2
ρ + 1

<
nρ

2
< ρ + 2, then there exists a

positive constant Kα such that

(3.3) ‖B(u) − B(v)‖α ≤ Kα‖u − v‖α (‖u‖ρ
α + ‖v‖ρ

α) ,

for all u, v ∈ Eα.

Proof. Without loss of generality, we assume t > 0. First note that if nρ
2 < ρ+2

ρ+1 <

ρ + 2, then α−β
2 (ρ + 1) < 1 and n

2 ( 2(ρ+1)
ρ+2 − 1) < 1. Therefore,

‖B(u) − B(v)‖(ρ+2,∞) ≤
∫ t

0

‖S(t − s)(|u|ρ u − |v|ρ v)‖(ρ+2,∞)ds

≤ C

∫ t

0

(t − s)−
n
2 ( 2(ρ+1)

ρ+2 −1)‖(|u − v|)(|u|ρ + |v|ρ)‖( ρ+2
ρ+1 ,∞)ds

≤ C

∫ t

0

(t − s)−
n
2 ( 2(ρ+1)

ρ+2 −1)‖u − v‖(ρ+2,∞)

(
‖u‖ρ

(ρ+2,∞) + ‖v‖ρ
(ρ+2,∞)

)
ds

≤ C

(
sup

0<t<T
t

α−β
2 ‖u − v‖(ρ+2,∞) sup

0<t<T

(
t

(α−β)ρ
2 ‖u‖ρ

(ρ+2,∞) + t
(α−β)ρ

2 ‖v‖ρ
(ρ+2,∞)

))

·
∫ t

0

(t − s)−
α−β

2 s−
α−β

2 (ρ+1)ds

= Kα,βt−
α−β

2 t1−
α−β

2 (ρ+1)‖u − v‖α,β

(
‖u‖ρ

α,β + ‖v‖ρ
α,β

)
,

which proves (3.2). On the other hand, if ρ+2
ρ+1 < nρ

2 < ρ+2, then α
2 (ρ+1) < 1 and

n
2 ( 2(ρ+1)

ρ+2 − 1) < 1. In this case,

‖B(u) − B(v)‖(ρ+2,∞)

≤ C

∫ t

0

(t − s)−
n
2 ( 2(ρ+1)

ρ+2 −1)‖u − v‖(ρ+2,∞)

(
‖u‖ρ

(ρ+2,∞) + ‖v‖ρ
(ρ+2,∞)

)
ds

≤ C

(
sup
t>0

t
α
2 ‖u − v‖(ρ+2,∞) sup

t>0

(
t

αρ
2 ‖u‖ρ

(ρ+2,∞) + t
αρ
2 ‖v‖ρ

(ρ+2,∞)

))

·
∫ t

0

(t − s)−
n
2 ( 2(ρ+1)

ρ+2 −1)s−
α
2 (ρ+1)ds

= Kαt−
α
2 ‖u − v‖α (‖u‖ρ

α + ‖v‖ρ
α) ,

which proves (3.3). �
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3.1. Proof of Theorem 2.4. Let y = S(t)φ. Due to Lemma 2.1, one has

‖y‖α,β = sup
−T<t<T

|t|
α−β

2 ‖S(t)φ‖(ρ+2,∞) ≤ C ‖φ‖( ρ+2
ρ+1 ,∞) < ∞.

Using Lemma 3.2, one gets

(3.4) ‖B(u) − B(v)‖α,β ≤ Kα,βT δ‖u − v‖α,β

(
‖u‖ρ

α,β + ‖v‖ρ
α,β

)
,

where δ = 1 − α−β
2 (ρ + 1) > 0. Now, choose 0 < T < ∞ sufficiently small, and

ε > 0 such that ‖y‖α,β ≤ C ‖φ‖( ρ+2
ρ+1 ,∞) = ε < R :=

(
1

2(ρ+1)Kα,βT δ

) 1
ρ

. Using

Lemma 3.1 with X = ET
α,β , one assures the existence of a local mild solution

u ∈ ET
α,β . Moreover, this solution is unique in the ball B2ε := B(0, 2ε) ⊂ ET

α,β .
Furthermore, through standard arguments, one can prove that u(t) → φ in the
sense of distributions when t → 0. So, solutions of the integral equation are indeed
mild solutions in the sense of Definition 2.3.

Finally, let un and u be the solutions with respective initial data φn and φ.
Lemma 3.1 gives

‖un − u‖Eα,β
≤ 1

1 − 2ρ+1Kα,βT δερ
‖S(t)φn − S(t)φ‖Eα,β

≤ C

1 − 2ρ+1Kα,βT δερ
‖φn − φ‖( ρ+2

ρ+1 ,∞).

This finishes the proof.

3.2. Proof of Theorem 2.5. Apply Lemma 3.1 to the integral equation (1.3) with
X = Eα and y = S(t)φ. In this case, bound (3.3) gives

‖B(u) − B(v)‖α ≤ Kα‖u − v‖α (‖u‖ρ
α + ‖v‖ρ

α) .

Now, one considers ε > 0 small enough so that

‖S(t)φ‖α = sup
|t|>0

|t|α
2 ‖S(t)φ‖(ρ+2,∞) < ε

allows one to apply Lemma 3.1 repeatedly, in order to obtain the existence of a
global mild solution u ∈ Eα. This solution is unique in the ball B2ε := B(0, 2ε) ⊂
Eα.

The continuity of the solutions with respect to the initial conditions, as well as
the continuity of the solutions in the sense of distributions, follows as in the proof
of Theorem 2.4.

3.3. Proof of Corollary 2.6. Let t > 0. If the initial data φ(x) is a homoge-
neous function of degree − 2

ρ , then S(t)φ satisfies the self-similar property u(t, x) =

µ
2
ρ u(µ2t, µx). Thus,

tα/2‖S(t)φ‖(ρ+2,∞) = t
α
2 t

n
2(ρ+2)−

1
ρ ‖S(1)φ‖(ρ+2,∞) = ‖S(1)φ‖(ρ+2,∞).

Moreover, ‖S(1)φ‖Lρ+2 is finite (see [6]). Since Lρ+2 ↪→ L(ρ+2,∞) continuously,
one has ‖S(1)φ‖(ρ+2,∞) ≤ ‖S(1)φ‖Lρ+2 < ∞. Therefore, if ‖S(1)φ‖(ρ+2,∞) is small
enough, it is straightforward to show that the solution u(t, x) obtained in Theo-
rem 2.4 is self-similar.
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3.4. Proof of Theorem 2.8. Without loss of generality, assume t > 0. Taking
the difference of the integral equations satisfied by u and v, one gets

t
α
2 +h ‖u(t) − v(t)‖(ρ+2,∞) ≤ t

α
2 +h ‖S(t)(φ − ϕ)‖(ρ+2,∞)

+ t
α
2 +h

∥∥∥∥
∫ t

0

S(t − s)(u |u|ρ − v |v|ρ)ds

∥∥∥∥
(ρ+2,∞)

.

Since ‖u‖α, ‖v‖α ≤ 2ε, one uses the change of variable s 
−→ ts and bounds

t
α
2 +h‖

∫ t

0

S(t − s)(u|u|ρ − v|v|ρ)ds‖(ρ+2,∞)

≤ Ct
α
2 +h

∫ t

0

[
(t − s)−

n
2 ( 2(ρ+1)

(ρ+2) −1)s−
α(ρ+1)

2 −h

·
(
s

αρ
2 ‖u(s)‖ρ

(ρ+2,∞) + s
αρ
2 ‖v(s)‖ρ

(ρ+2,∞)

)(
s

α
2 +h‖u(s) − v(s)‖(ρ+2,∞)

)]
ds

≤ C2ρ+1ερ

∫ 1

0

(1 − s)−
n
2 ( 2(ρ+1)

(ρ+2) −1)s−
α(ρ+1)

2 −h(ts)
α
2 +h‖u(ts) − v(ts)‖(ρ+2,∞)ds.

Therefore,

t
α
2 +h ‖u(t) − v(t)‖(ρ+2,∞) ≤ t

α
2 +h ‖S(t)(φ − ϕ)‖(ρ+2,∞)

(3.5)

+ C2ρ+1ερ

∫ 1

0

(1 − s)−
n
2 ( 2(ρ+1)

(ρ+2) −1)s−
α
2 (ρ+1)−h(ts)

α
2 +h‖u(ts) − v(ts)‖(ρ+2,∞)ds,

for all t > 0. Now, define

A := lim sup
t→∞

t
α
2 +h‖u(t) − v(t)‖(ρ+2,∞).

Using the assumption on the initial perturbation φ − ϕ, it is not difficult to show
that A < ∞. Now, note that

lim sup
t→∞

∫ 1

0

(1 − s)−
n
2 ( 2(ρ+1)

(ρ+2) −1)s
−α(ρ+1)

2 −h(ts)
α
2 +h‖u(ts) − v(ts)‖(ρ+2,∞)ds

≤ A

∫ 1

0

(1 − s)−
n
2 ( 2(ρ+1)

(ρ+2) −1)s−
α
2 (ρ+1)−hds.

So, taking the lim sup
t→∞

in (3.5), one obtains

A ≤
(

C2ρ+1ερ

∫ 1

0

(1 − s)−
n
2 ( 2(ρ+1)

(ρ+2) −1)s−
α(ρ+1)

2 −hds

)
A.

Now, let Γ := C2ρ+1
∫ 1

0
(1 − s)−

n
2 ( 2(ρ+1)

(ρ+2) −1)s−
α(ρ+1)

2 −hds. Choosing ε > 0 small
enough such that ερΓ < 1, one concludes that A = 0. This proves part 1 of the
theorem.

In order to prove part 2, let δ = 1− α−β
2 (ρ+1) and 0 < t < T as in Theorem 2.4.

One can write δ = α−β
2 − h − α−β

2 − α−β
2 (ρ + 1) + h + 1. Again, one subtracts the
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equations for u and v and bounds

t
α−β

2 −h

∥∥∥∥
∫ t

0

S(t − s)(u |u|ρ − v |v|ρ)ds

∥∥∥∥
(ρ+2,∞)

≤ Ct
α−β

2 −h

∫ t

0

[
(t − s)−

α−β
2 s−

α−β
2 (ρ+1)+h(s

α−β
2 ρ(‖u(s)‖ρ

(ρ+2,∞) + ‖v(s)‖ρ
(ρ+2,∞)))

· s
α−β

2 −h‖u(s) − v(s)‖(ρ+2,∞)

]
ds

≤ C2ρ+1ερt
α−β

2 −h−α−β
2 −α−β

2 (ρ+1)+h+1

·
∫ 1

0

(1 − s)−
α−β

2 s−
α−β

2 (ρ+1)+h(ts)
α−β

2 −h‖u(ts) − v(ts)‖(ρ+2,∞)ds.

Hence,

t
α−β

2 −h ‖u(t) − v(t)‖(ρ+2,∞) ≤ t
α−β

2 −h ‖S(t)(φ − ϕ)‖(ρ+2,∞)

+ C2ρ+1ερtδ
∫ 1

0

(1 − s)−
α−β

2 s−
α−β

2 (ρ+1)+h(ts)
α−β

2 −h‖u(ts) − v(ts)‖(ρ+2,∞)ds.

Writing A := lim supt→0 t
α−β

2 −h‖u(t)−v(t)‖(ρ+2,∞) < ∞, one takes the lim supt→0

in the last inequality to obtain

0 ≤ A ≤ C2ρ+1ερA

∫ 1

0

(1 − s)−
α−β

2 s−
α−β

2 (ρ+1)+hds lim
t→0

tδ = 0.

This concludes the proof.
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