SUBANALYTIC BLOW-C^m FUNCTIONS

ANDREAS FISCHER AND KRZYSZTOF KURDYKA

(Communicated by Varghese Mathai)

Abstract. We describe rings of subanalytic functions which become continuously differentiable after finitely many local blowings-up with analytic centers.

1. Introduction

An arc-analytic function is a function that is analytic along every analytic arc. Arc-analytic functions were introduced in [13] and have been successfully studied in various papers under the additional hypothesis that they are semialgebraic or subanalytic; see for example [2, 5, 14, 15]. For instance every blow-analytic function in the sense of Kuo [11] is subanalytic and arc-analytic. Also a weak version of the inverse is true [2, 17]: every subanalytic and arc-analytic function becomes analytic after composition with some finite sequences of local blowings-up with smooth analytic centers. In general an arc-analytic function is not analytic. However, if we assume that a function is C^∞ along each C^∞ arc, then this function is actually of the class C^ω; this is due to J. Boman [4].

Let $m > 0$ be an integer. In the present paper we investigate subanalytic functions which become m times continuously differentiable after composition with a finite sequence of local blowings-up. In analogy to Kuo's notation, we call such a function a blow-C^m function. For an introduction of the notion and major properties of blowings-up in the subanalytic setting, see [1]. A general introduction to semialgebraic and subanalytic geometry is provided by [18].

Throughout the paper, every manifold is assumed to be of pure dimension, Hausdorff and equipped with a countable basis for its topology. We consider continuously differentiable versions of the concept of arc-analyticity. There are three versions we will discuss: Let M be a real analytic manifold. A function $f : M \to \mathbb{R}$ is called

- (a) a C^m_ω function if f is C^m-smooth along all analytic arcs,
- (b) a $C^m_{m,\text{sub}}$ function if f is C^m-smooth along all subanalytic C^m arcs,
- (c) a C^m_m function if f is C^m-smooth along all C^m arcs.

Every C^m_ω function is $C^m_{m,\text{sub}}$-smooth, and every $C^m_{m,\text{sub}}$ function is C^m_ω-smooth. We will show that these inclusions are proper even in the subanalytic category. In general, a C^m_ω function is not necessarily continuous; see the example of [3]. But...
subanalytic C^m functions are continuous. This enables us to study them with the help of Parusiński’s Rectilinearization Theorem. As an application of this theorem, we prove the following theorem.

Theorem 1.1. Let M be a real analytic manifold, and let $f : M \to \mathbb{R}$ be a subanalytic C^m function. Then f is blow-C^m.

A C^m-singular point of a function f is a point at which f is not C^m-smooth. The centers of a blowing-up are always analytic manifolds whose dimension is bounded by $\dim(M) - 2$. By [19] (see also [2, 12]), the set of C^m-singular points of a subanalytic function is again subanalytic. Hence, we obtain the following statement.

Theorem 1.2. Let M be a real analytic manifold, and let $f : M \to \mathbb{R}$ be a subanalytic arc-C^m function. Then the set S of C^m-singular points of f is subanalytic and satisfies

$$\dim(S) \leq \dim(M) - 2.$$

In Section 2, we briefly recall Parusiński’s Rectilinearization Theorem and some facts about subanalytic Peano differentiable functions which we need to investigate the examples presented in Section 3. In Section 4 we prove Theorem 1.1

2. Basics

We will use Parusiński’s Rectilinearization Theorem; cf. [17, Theorem 2.7].

Theorem 2.1 (Parusiński). Let U be an open subset of \mathbb{R}^n and let $f : U \to \mathbb{R}$ be a continuous subanalytic function. Then there exist a locally finite collection Ψ of real analytic morphisms $\phi_\alpha : W_\alpha \to \mathbb{R}^n$ such that

(a) each W_α contains a compact subset K_α such that $\bigcup_\alpha \phi_\alpha(K_\alpha)$ is a neighbourhood of $\text{cl}(U)$;

(b) for each α there exist $\tau_1, \ldots, \tau_n \in \mathbb{N}$, such that $\phi_\alpha = \sigma_\alpha \circ \psi_\alpha$, where σ_α is the composition of a finite sequence of local blowings-up with analytic center and

$$\psi_\alpha(x) = (\varepsilon_1 x_1^{\tau_1}, \ldots, \varepsilon_n x_n^{\tau_n})$$

for some $\varepsilon_i = \pm 1$;

(c) for any choice of signs $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \{1,-1\}^n$ and ψ_α as in Theorem 2.1 (b), the composition $f \circ \sigma_\alpha \circ \psi_\alpha$ is analytic.

We will give examples to distinguish the notions of differentiability along curves. This requires the concept of Peano differentiable functions.

Definition 2.2. Let $U \subset \mathbb{R}^n$ be open. A function $f : U \to \mathbb{R}$ is called m times Peano differentiable, in short $f \in \mathcal{P}^m(U, \mathbb{R})$, if for every $u \in U$ there is a polynomial p such that

$$f(x) - f(u) = p(x - u) + o(\|x - u\|^m) \text{ as } x \to u.$$

By Taylor’s Theorem, every C^m function is m times Peano differentiable. The sets of C^m-singular points of \mathcal{P}^m functions have been studied in [9] (see also [7]) for the o-minimal context. Every continuous subanalytic function is locally definable in the o-minimal structure \mathbb{R}_{an} consisting of all globally subanalytic sets; cf. [6] page 506. A subanalytic set $A \subset \mathbb{R}^n$ is called globally subanalytic if $\tau_n(A)$ is subanalytic where

$$\tau_n(x) = \left(\frac{x_1}{\sqrt{1 + x_1^2}}, \ldots, \frac{x_n}{\sqrt{1 + x_n^2}} \right);$$
see for example [6] page 506]. The theorems in [9] are stated for o-minimal expansions of real closed fields. However, for the subanalytic category the result of our interest (cf. [9, Theorem 1.1]) reads as follows:

Theorem 2.3. Let \(U \subset \mathbb{R}^n \) be open, and let \(f : U \to \mathbb{R} \) be a subanalytic \(\mathcal{P}^m \) function. Then the set \(S \) of \(\mathcal{C}^m \)-singular points is subanalytic and

\[
\dim(S) \leq n - 2.
\]

In particular unary subanalytic \(\mathcal{P}^m \) functions are \(\mathcal{C}^m \)-smooth. Note that every subanalytic \(\mathcal{P}^m \) function is actually \(\mathcal{C}^m_{\omega} \). Hence from Theorem [11] follows:

Corollary 2.4. Every subanalytic \(\mathcal{P}^m \) function is blow-\(\mathcal{C}^m \).

3. Examples

Next we discuss the announced examples.

Example 3.1. Let \(\varphi : \mathbb{R} \to \mathbb{R} \) be a semialgebraic \(\mathcal{C}^m \) function that vanishes outside of \((0, 2)\) and for which \(\varphi(1) = 1 \). Let

\[
A := \{(x, y) \in \mathbb{R}^2 : x > 0, \ x^{m+1/2} < y < 3x^{m+1/2}\}.
\]

Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be the function

\[
f(x, y) = \begin{cases} x^{m/2+1/8}\varphi \left(\frac{y}{x^{m+1/2}} - 1 \right), & \text{if } (x, y) \in A, \\ 0, & \text{otherwise}. \end{cases}
\]

Then \(f \) is a semialgebraic \(\mathcal{C}^m_{\omega} \) function that is not \(\mathcal{C}^m_{m, \text{sub}} \)-smooth.

Proof. First we prove that \(f \) is \(\mathcal{C}^m_{\omega} \)-smooth.

Outside of \((0, 0)\) the function \(f \) is \(\mathcal{C}^m \)-smooth. It remains to study the origin. Let

\[
\phi = (\phi_1, \phi_2) : (-1, 1) \to \mathbb{R}^2
\]

be an analytic curve with \(\phi(0) = (0, 0) \).

Assume that \(\phi'(0) = 0 \), and that \(\phi_1(t) > 0 \) for \(t > 0 \) small enough. Then

\[
\phi_1(t) = O \left(t^2 \right) \text{ as } t \to 0
\]

so that

\[
f \circ \phi(t) \text{ is } O \left(t^{m+1/4} \right) \text{ as } t \to 0.
\]

Hence \(f \circ \phi \) is \(m \) times Peano differentiable at \(t = 0 \). Note that \(f \circ \phi(t) \) restricted to \((-1/2, 1/2)\) is definable. Thus \(f \circ \phi \) is \(\mathcal{C}^m \)-smooth in some pointed neighbourhood of \(0 \). By Theorem 2.3 the function \(f \circ \phi \) is \(\mathcal{C}^m \)-smooth.

If \(\phi'(0) \neq 0 \), then we claim that \(f \circ \phi \) is locally zero at \(0 \). Again we may assume that \(\phi_1(t) > 0 \) for \(t > 0 \) sufficiently small. If \(\phi_2'(0) > 0 \), then the germ of \(\phi \) at \(0^+ \) lies above \(A \), and if \(\phi_2'(0) \leq 0 \), then the germ lies below \(A \). In both cases, the function \(f \circ \phi(t) = 0 \) for \(t \) sufficiently close to \(0 \).

Hence \(f \) is a \(\mathcal{C}^m_{\omega} \) function.

To see that \(f \) is not a \(\mathcal{C}^m_{m, \text{sub}} \) function we show that \(f \) is not \(\mathcal{C}^m \)-smooth along the semialgebraic \(\mathcal{C}^m \) curve \(\phi : (-1, 1) \to \mathbb{R}^2 \) given by

\[
\phi(t) := \begin{cases} (t, 2t^{m+1/2}), & \text{if } t > 0, \\ (t, 0), & \text{if } t \leq 0. \end{cases}
\]
The composition \(f \circ \phi(t) = 0 \) for \(t \leq 0 \). But for \(t > 0 \),

\[
f \circ \phi(t) = t^{m/2+1/8},
\]

which cannot be extended to 0 as a \(C^m \) function. \(\square \)

Remark 3.1. By the previous example we see that the class of subanalytic \(C^m \)
functions is not closed under compositions. The classes of subanalytic \(C^m \) and \(C^{m,\text{sub}} \)
functions are closed under compositions.

Example 3.3. Let the semialgebraic function \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by

\[
f(x, y) := \begin{cases} y^{m+1} \varphi \left(\frac{x}{y^{2m^2}} - 2 \right), & y > 0, \\ 0, & y \leq 0, \end{cases}
\]

where \(\varphi : \mathbb{R} \to \mathbb{R} \) is defined by

\[
\varphi(t) := \begin{cases} t (1-t^2)^{m+1}, & t \in (-1, 1), \\ 0, & \text{otherwise}. \end{cases}
\]

Then \(f \) is \(m \) times Peano differentiable. Thus \(f \) is \(C^{m,\text{sub}} \)-smooth. But \(f \) is not a \(C^m \) function.

Proof. The function \(f \) is \(C^m \)-smooth outside of the origin. The function \(\varphi \) is bounded, so that

\[
f(x, y) \text{ is } o \left(\| (x, y) \|^{m} \right) \text{ as } (x, y) \to (0, 0).
\]

Hence \(f \) is \(m \) times Peano differentiable, so \(f \) is \(C^{m,\text{sub}} \)-smooth.

Next we present a \(C^m \) curve along which \(f \) is not even \(C^1 \)-smooth. Let \(\phi : (-1, 1) \to \mathbb{R}^2 \) be the curve given by

\[
\phi(t) := \left(2t^{2m^2} + t^{2m^2+1} \sin \left(t^{-m-1/2} \right), t \right).
\]

It is straightforward to verify that \(\phi \) is a \(C^m \) curve. We note the first derivative of the first component of \(\phi \) for \(t > 0 \):

\[
\phi'_1(t) = 2m^2 t^{2m^2-1} \left(1 + \sin \left(t^{-m-1/2} \right) \right) - \left(m + \frac{1}{2} \right) t^{2m^2-m-1/2} \cos \left(t^{-m-1/2} \right).
\]

The partial derivative of \(f \) with respect to \(y \) is continuous. Hence it suffices to study \(\partial f / \partial x \). For \(y > 0 \),

\[
\frac{\partial f}{\partial x}(x, y) = y^{-2m^2+m} \varphi' \left(xy^{-2m^2} - 2 \right).
\]

Note that \(\varphi'(0) = 1 \). Hence, combining the equations (3.1) and (3.2) we can write \((f \circ \phi)'(t) \) for positive \(t \) as follows:

\[
(f \circ \phi)'(t) = \frac{\partial f}{\partial y}(\phi(t)) \varphi'_2(t) + \frac{\partial f}{\partial x}(\phi(t)) \varphi'_1(t)
\]

\[
= \frac{\partial f}{\partial y}(\phi(t)) + \varphi' \left(t \sin \left(t^{-m-1/2} \right) \right) \left(2m^2 t^{-m-1} \left(1 + \sin \left(t^{-m-1/2} \right) \right) \right)
\]

\[
+ \varphi' \left(t \sin \left(t^{-m-1/2} \right) \right) \left(- \left(m + \frac{1}{2} \right) t^{-m-1/2} \cos \left(t^{-m-1/2} \right) \right).
\]

The first two summands are bounded, while the third summand is not locally bounded at \(t = 0 \). Thus \(f \circ \phi(t) \) is not continuously differentiable at \(t = 0 \). \(\square \)
4. Proof of the main theorem

We prepare the proof of Theorem 1.1 by the following observation. Let $B_1(0)$ denote the open unit-ball in \mathbb{R}^n.

Lemma 4.1. Let $f, g : B_1(0) \to \mathbb{R}$ be C^m functions. Assume that the function $f : B_1(0) \to \mathbb{R}$,

$$F(x) := \begin{cases} f(x), & \text{if } x_1 \leq 0, \\ g(x), & \text{if } x_1 > 0, \end{cases}$$

is C^m-smooth along every line segment contained in $B_1(0)$. Then F is C^m-smooth.

Proof. We may assume that g vanishes identically. Then, it remains to prove that for every $\xi \in B_1(0) \cap \{x_1 = 0\}$ and every $\alpha \in \mathbb{N}^n$ with $\alpha_1 + \cdots + \alpha_n \leq m$,

$$D_{\alpha} f(\xi) = 0,$$

because in this case, the Hestenes Lemma (cf. [10], [20]) implies that F is C^m-smooth.

We express $D_{\alpha} f(\xi)$ as a linear combination of higher-order directional derivatives. This is possible by [8] Proof of Theorem 1.4. All directional derivatives of F at ξ vanish, as $F = 0$ for $x_1 > 0$. But $f = F = 0$ for $x_1 \leq 0$, so that every directional derivative of f at ξ vanishes. Thus F is C^m-smooth. □

Lemma 4.2. Any subanalytic C^m_ω function $f : M \to \mathbb{R}$ is continuous.

Proof. Assume that f is not continuous at a. Then, by the curve selection (cf. [16], [2], [9] 1.17), there exists an analytic map $\gamma : (-1, 1) \to M$ with $\gamma(0) = a$ and $\gamma(t) \neq a$ for $t \neq 0$ such that $\lim_{t \to 0} f \circ \gamma(t) \neq f(a)$. But $f \circ \gamma(0) = f(a)$ and $f \circ \gamma$ is at least continuous. Thus f must be continuous. □

Proof of Theorem 1.1. The problem is local, so that we may assume that $M = U \subset \mathbb{R}^n$ is a neighbourhood of the origin. Since every C^m_ω function is continuous, we can apply Parusiński’s theorem to f and U and obtain a family $\{\phi_\alpha = \sigma_\alpha \circ \psi_\alpha\}$ which satisfies the conclusion of Theorem 2.1. Let $\sigma = \sigma_\alpha$, and fix the corresponding $r_i \in \mathbb{N}$. Then, for each $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in (1, -1]^n$ and ψ as defined in Theorem 2.1 [6], the function $f \circ \sigma \circ \psi$ is analytic. Hence

$$f \circ \sigma \circ \psi(x) = \sum_{\beta} a_\beta \prod_{i=1}^{n} x_i^{\beta_i}.$$

On the quadrant $Q_\varepsilon = \{x \in \mathbb{R}^n : \varepsilon_i x_i \geq 0 \text{ for } i = 1, \ldots, n\}$ we have

$$f \circ \sigma(x) = \sum_{\beta} a_\beta \prod_{i=1}^{n} (\varepsilon_i x_i)^{\beta_i/r_i}.$$

But σ is analytic; hence $f \circ \sigma$ is a C^m_ω function. Assume that there is a multi-index $\gamma = (\gamma_1, \ldots, \gamma_n)$ with

$$\frac{\gamma_1}{r_1} + \cdots + \frac{\gamma_n}{r_n} < m$$

such that at least one of the r_i does not divide γ_i, and $a_\gamma \neq 0$. Then, for generic $c = (c_1, \ldots, c_i, \ldots, c_n)$ with $\varepsilon_j c_j \geq 0$ for $j \neq i$, the function

$$f \circ \sigma(c_1, \ldots, c_{i-1}, \varepsilon_i t, c_{i+1}, \ldots, c_n)$$

...
has the Puiseux expansion with non-zero coefficient at \(t^{\gamma_i/r_i} \). This contradicts the fact that \(f \circ \sigma \) is \(C^m_\omega \)-smooth.

Therefore, the function \(f \circ \sigma \) restricted to \(Q_\varepsilon \) is \(C^m_\omega \)-smooth. By [21], it extends to a \(C^m_\omega \) function \(F_\varepsilon \) defined on some open neighbourhood of \(Q_\varepsilon \). Thus, \(f \circ \sigma \) is the gluing of the \(F_\varepsilon \) restricted to \(Q_\varepsilon \). Recall that \(f \circ \sigma \) is \(C^m_\omega \)-smooth. Lemma 4.1 implies that \(f \circ \sigma \) is \(C^m_\omega \)-smooth in the set

\[
U \setminus \bigcup_{\ell \neq k} \{ x \in \mathbb{R}^n : x_\ell = x_k = 0 \}.
\]

The derivatives of \(f \circ \sigma \) extend continuously to \(U \), so again by [21], the function \(f \circ \sigma \) is \(C^m \)-smooth. \(\square \)

REFERENCES

Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E6, Canada

Current address: Fields Institute, 222 College Street, Toronto, Ontario, M5T 3J1, Canada

E-mail address: fischerandreas@web.de

Laboratoire de Mathématiques LAMA, UMR-5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France

E-mail address: kurdyka@univ-savoie.fr