Twisting quasi-alternating links
HTML articles powered by AMS MathViewer
- by Abhijit Champanerkar and Ilya Kofman
- Proc. Amer. Math. Soc. 137 (2009), 2451-2458
- DOI: https://doi.org/10.1090/S0002-9939-09-09876-1
- Published electronically: March 10, 2009
- PDF | Request permission
Abstract:
Quasi-alternating links are homologically thin for both Khovanov homology and knot Floer homology. We show that every quasi-alternating link gives rise to an infinite family of quasi-alternating links obtained by replacing a crossing with an alternating rational tangle. Consequently, we show that many pretzel links are quasi-alternating, and we determine the thickness of Khovanov homology for “most” pretzel links with arbitrarily many strands.References
- J. Baldwin, Heegaard Floer homology and genus one, one boundary component open books (arXiv:0804.3624v2 [math.GT]).
- Gerhard Burde and Heiner Zieschang, Knots, 2nd ed., De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 2003. MR 1959408
- Abhijit Champanerkar and Ilya Kofman, On links with cyclotomic Jones polynomials, Algebr. Geom. Topol. 6 (2006), 1655–1668. MR 2253460, DOI 10.2140/agt.2006.6.1655
- —, Spanning trees and Khovanov homology, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2157–2167.
- Abhijit Champanerkar, Ilya Kofman, and Neal Stoltzfus, Graphs on surfaces and Khovanov homology, Algebr. Geom. Topol. 7 (2007), 1531–1540. MR 2366169, DOI 10.2140/agt.2007.7.1531
- O. T. Dasbach, D. Futer, E. Kalfagianni, X. S. Lin, and N. W. Stoltzfus, Alternating sum formulae for the determinant and other link invariants (arXiv:math/0611025v2 [math.GT]).
- E. Eftekhary, Heegaard Floer homologies of pretzel knots (arXiv:math.GT/0311419).
- J. Greene, A spanning tree model for the Heegaard Floer homology of a branched double-cover (arXiv:0805.1381v1 [math.GT]).
- Eriko Hironaka, The Lehmer polynomial and pretzel links, Canad. Math. Bull. 44 (2001), no. 4, 440–451. MR 1863636, DOI 10.4153/CMB-2001-044-x
- Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR 1417494
- Mikhail Khovanov, Patterns in knot cohomology. I, Experiment. Math. 12 (2003), no. 3, 365–374. MR 2034399
- Paolo Lisca and András I. Stipsicz, Ozsváth-Szabó invariants and tight contact 3-manifolds. III, J. Symplectic Geom. 5 (2007), no. 4, 357–384. MR 2413308
- A. Lowrance, On knot Floer width and Turaev genus (arXiv:0709.0720v1).
- Ciprian Manolescu, An unoriented skein exact triangle for knot Floer homology, Math. Res. Lett. 14 (2007), no. 5, 839–852. MR 2350128, DOI 10.4310/MRL.2007.v14.n5.a11
- C. Manolescu and P. Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links (arXiv:0708.3249v2 [math.GT]).
- V. Manturov, Minimal diagrams of classical and virtual links (arXiv:math.GT/0501393).
- Peter Ozsváth and Zoltán Szabó, Knot Floer homology, genus bounds, and mutation, Topology Appl. 141 (2004), no. 1-3, 59–85. MR 2058681, DOI 10.1016/j.topol.2003.09.009
- Peter Ozsváth and Zoltán Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1–33. MR 2141852, DOI 10.1016/j.aim.2004.05.008
- A. Shumakovitch, KhoHo, available from http://www.geometrie.ch/KhoHo/ (2003).
- A. Shumakovitch, Private communication, March 2008.
- R. Suzuki, Khovanov homology and Rasmussen’s s-invariants for pretzel knots (arXiv:math.QA/0610913).
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6
- T. Widmer, Quasi-alternating Montesinos links (arXiv:math/0811.0270 [math.GT]).
Bibliographic Information
- Abhijit Champanerkar
- Affiliation: Department of Mathematics, College of Staten Island, The City University of New York, Staten Island, New York 10314
- Email: abhijit@math.csi.cuny.edu
- Ilya Kofman
- Affiliation: Department of Mathematics, College of Staten Island, The City University of New York, Staten Island, New York 10314
- Email: ikofman@math.csi.cuny.edu
- Received by editor(s): April 22, 2008
- Published electronically: March 10, 2009
- Additional Notes: The first author was supported by NSF grant DMS-0844485.
The second author was supported by NSF grant DMS-0456227 and a PSC-CUNY grant. - Communicated by: Daniel Ruberman
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 2451-2458
- MSC (2000): Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-09-09876-1
- MathSciNet review: 2495282