## Twisted homogeneous coordinate rings of abelian surfaces via mirror symmetry

HTML articles powered by AMS MathViewer

- by Marco Aldi PDF
- Proc. Amer. Math. Soc.
**137**(2009), 2741-2747 Request permission

## Abstract:

In this paper we study Seidel’s mirror map for abelian and Kummer surfaces. We find that mirror symmetry leads in a very natural way to the classical parametrization of Kummer surfaces in $\mathbb {P}^3$. Moreover, we describe a family of embeddings of a given abelian surface into noncommutative projective spaces.## References

- Mohammed Abouzaid,
*Homogeneous coordinate rings and mirror symmetry for toric varieties*, Geom. Topol.**10**(2006), 1097–1156. [Paging previously given as 1097–1157]. MR**2240909**, DOI 10.2140/gt.2006.10.1097 - Marco Aldi and Eric Zaslow,
*Seidel’s mirror map for abelian varieties*, Adv. Theor. Math. Phys.**10**(2006), no. 4, 591–602. MR**2259690** - M. Artin, J. Tate, and M. Van den Bergh,
*Some algebras associated to automorphisms of elliptic curves*, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 33–85. MR**1086882** - Christina Birkenhake and Herbert Lange,
*Complex tori*, Progress in Mathematics, vol. 177, Birkhäuser Boston, Inc., Boston, MA, 1999. MR**1713785**, DOI 10.1007/978-1-4612-1566-0 - I. V. Čerednik,
*Some $S$-matrices connected with abelian varieties*, Dokl. Akad. Nauk SSSR**249**(1979), no. 5, 1095–1098 (Russian). MR**565088** - Maria R. Gonzalez-Dorrego,
*$(16,6)$ configurations and geometry of Kummer surfaces in $\textbf {P}^3$*, Mem. Amer. Math. Soc.**107**(1994), no. 512, vi+101. MR**1182682**, DOI 10.1090/memo/0512 - R. Hudson,
*Kummer’s Quartic Surface*, Cambridge Univ. Press, 1905. - A. N. Kapustin and D. O. Orlov,
*Lectures on mirror symmetry, derived categories, and D-branes*, Uspekhi Mat. Nauk**59**(2004), no. 5(359), 101–134 (Russian, with Russian summary); English transl., Russian Math. Surveys**59**(2004), no. 5, 907–940. MR**2125928**, DOI 10.1070/RM2004v059n05ABEH000772 - Maxim Kontsevich,
*Homological algebra of mirror symmetry*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139. MR**1403918** - E. K. Sklyanin,
*Some algebraic structures connected with the Yang-Baxter equation*, Funktsional. Anal. i Prilozhen.**16**(1982), no. 4, 27–34, 96 (Russian). MR**684124** - S. P. Smith,
*The four-dimensional Sklyanin algebras*, Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part I (Antwerp, 1992), 1994, pp. 65–80. MR**1273836**, DOI 10.1007/BF00962090 - J. T. Stafford and M. van den Bergh,
*Noncommutative curves and noncommutative surfaces*, Bull. Amer. Math. Soc. (N.S.)**38**(2001), no. 2, 171–216. MR**1816070**, DOI 10.1090/S0273-0979-01-00894-1 - Eric Zaslow,
*Seidel’s mirror map for the torus*, Adv. Theor. Math. Phys.**9**(2005), no. 6, 999–1006. MR**2207572**

## Additional Information

**Marco Aldi**- Affiliation: Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, California 94720-3840
- Received by editor(s): October 19, 2006
- Received by editor(s) in revised form: October 27, 2008
- Published electronically: February 11, 2009
- Additional Notes: This work was partially supported by NSF grant DMS-0072508
- Communicated by: Ted Chinburg
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 2741-2747 - MSC (2000): Primary 53D12; Secondary 14A22
- DOI: https://doi.org/10.1090/S0002-9939-09-09817-7
- MathSciNet review: 2497487