## Blow-up formulas and smooth birational invariants

HTML articles powered by AMS MathViewer

- by Zhaohu Nie PDF
- Proc. Amer. Math. Soc.
**137**(2009), 2529-2539 Request permission

## Abstract:

We prove that the blow-up formula for the singular homology of a complex smooth projective variety with a smooth center respects two natural filtrations, namely the topological and the geometric filtrations. This then enables us to establish some smooth birational invariants.## References

- Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk,
*Torification and factorization of birational maps*, J. Amer. Math. Soc.**15**(2002), no. 3, 531–572. MR**1896232**, DOI 10.1090/S0894-0347-02-00396-X - Donu Arapura and Su-Jeong Kang,
*Functoriality of the coniveau filtration*, Canad. Math. Bull.**50**(2007), no. 2, 161–171. MR**2317438**, DOI 10.4153/CMB-2007-017-5 - Donu Arapura and Su-Jeong Kang,
*Coniveau and the Grothendieck group of varieties*, Michigan Math. J.**54**(2006), no. 3, 611–622. MR**2280497**, DOI 10.1307/mmj/1163789917 - Spencer Bloch,
*Algebraic cycles and the Beĭlinson conjectures*, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 65–79. MR**860404**, DOI 10.1090/conm/058.1/860404 - Albrecht Dold and René Thom,
*Quasifaserungen und unendliche symmetrische Produkte*, Ann. of Math. (2)**67**(1958), 239–281 (German). MR**97062**, DOI 10.2307/1970005 - Hélène Esnault and Eckart Viehweg,
*Deligne-Beĭlinson cohomology*, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43–91. MR**944991** - Eric M. Friedlander and Ofer Gabber,
*Cycle spaces and intersection theory*, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 325–370. MR**1215970** - Eric M. Friedlander and Barry Mazur,
*Filtrations on the homology of algebraic varieties*, Mem. Amer. Math. Soc.**110**(1994), no. 529, x+110. With an appendix by Daniel Quillen. MR**1211371**, DOI 10.1090/memo/0529 - Hu, W.
*Birational invariants defined by Lawson homology.*To appear in Int. J. Pure Appl. Math. arXiv:math/0511722. - Hu, W.
*The Generalized Hodge conjecture for $1$-cycles and codimension two algebraic cycles.*arXiv:math/0511725. - Hu, W.
*Some relations between the topological and geometric filtration for smooth projective varieties.*arXiv:math/0603203. - H. Blaine Lawson Jr.,
*Algebraic cycles and homotopy theory*, Ann. of Math. (2)**129**(1989), no. 2, 253–291. MR**986794**, DOI 10.2307/1971448 - James D. Lewis,
*A survey of the Hodge conjecture*, 2nd ed., CRM Monograph Series, vol. 10, American Mathematical Society, Providence, RI, 1999. Appendix B by B. Brent Gordon. MR**1683216**, DOI 10.1090/crmm/010 - Paulo Lima-Filho,
*Lawson homology for quasiprojective varieties*, Compositio Math.**84**(1992), no. 1, 1–23. MR**1183559** - Ju. I. Manin,
*Correspondences, motifs and monoidal transformations*, Mat. Sb. (N.S.)**77 (119)**(1968), 475–507 (Russian). MR**0258836** - C. Peters,
*Lawson homology for varieties with small Chow groups and the induced filtration on the Griffiths groups*, Math. Z.**234**(2000), no. 2, 209–223. MR**1765879**, DOI 10.1007/s002099900055 - Joel Roberts,
*Chow’s moving lemma*, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, pp. 89–96. Appendix 2 to: “Motives” (*Algebraic geometry, Oslo 1970*(Proc. Fifth Nordic Summer School in Math.), pp. 53–82, Wolters-Noordhoff, Groningen, 1972) by Steven L. Kleiman. MR**0382269**

## Additional Information

**Zhaohu Nie**- Affiliation: Department of Mathematics, Penn State Altoona, 3000 Ivyside Park, Altoona, Pennsylvania 16601
- MR Author ID: 670293
- Email: znie@psu.edu
- Received by editor(s): October 1, 2007
- Received by editor(s) in revised form: September 30, 2008
- Published electronically: March 20, 2009
- Communicated by: Ted Chinburg
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 2529-2539 - MSC (2000): Primary 14F43, 14E99
- DOI: https://doi.org/10.1090/S0002-9939-09-09872-4
- MathSciNet review: 2497464