Blow-up formulas and smooth birational invariants
HTML articles powered by AMS MathViewer
- by Zhaohu Nie
- Proc. Amer. Math. Soc. 137 (2009), 2529-2539
- DOI: https://doi.org/10.1090/S0002-9939-09-09872-4
- Published electronically: March 20, 2009
- PDF | Request permission
Abstract:
We prove that the blow-up formula for the singular homology of a complex smooth projective variety with a smooth center respects two natural filtrations, namely the topological and the geometric filtrations. This then enables us to establish some smooth birational invariants.References
- Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531–572. MR 1896232, DOI 10.1090/S0894-0347-02-00396-X
- Donu Arapura and Su-Jeong Kang, Functoriality of the coniveau filtration, Canad. Math. Bull. 50 (2007), no. 2, 161–171. MR 2317438, DOI 10.4153/CMB-2007-017-5
- Donu Arapura and Su-Jeong Kang, Coniveau and the Grothendieck group of varieties, Michigan Math. J. 54 (2006), no. 3, 611–622. MR 2280497, DOI 10.1307/mmj/1163789917
- Spencer Bloch, Algebraic cycles and the Beĭlinson conjectures, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 65–79. MR 860404, DOI 10.1090/conm/058.1/860404
- Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239–281 (German). MR 97062, DOI 10.2307/1970005
- Hélène Esnault and Eckart Viehweg, Deligne-Beĭlinson cohomology, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43–91. MR 944991
- Eric M. Friedlander and Ofer Gabber, Cycle spaces and intersection theory, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 325–370. MR 1215970
- Eric M. Friedlander and Barry Mazur, Filtrations on the homology of algebraic varieties, Mem. Amer. Math. Soc. 110 (1994), no. 529, x+110. With an appendix by Daniel Quillen. MR 1211371, DOI 10.1090/memo/0529
- Hu, W. Birational invariants defined by Lawson homology. To appear in Int. J. Pure Appl. Math. arXiv:math/0511722.
- Hu, W. The Generalized Hodge conjecture for $1$-cycles and codimension two algebraic cycles. arXiv:math/0511725.
- Hu, W. Some relations between the topological and geometric filtration for smooth projective varieties. arXiv:math/0603203.
- H. Blaine Lawson Jr., Algebraic cycles and homotopy theory, Ann. of Math. (2) 129 (1989), no. 2, 253–291. MR 986794, DOI 10.2307/1971448
- James D. Lewis, A survey of the Hodge conjecture, 2nd ed., CRM Monograph Series, vol. 10, American Mathematical Society, Providence, RI, 1999. Appendix B by B. Brent Gordon. MR 1683216, DOI 10.1090/crmm/010
- Paulo Lima-Filho, Lawson homology for quasiprojective varieties, Compositio Math. 84 (1992), no. 1, 1–23. MR 1183559
- Ju. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475–507 (Russian). MR 0258836
- C. Peters, Lawson homology for varieties with small Chow groups and the induced filtration on the Griffiths groups, Math. Z. 234 (2000), no. 2, 209–223. MR 1765879, DOI 10.1007/s002099900055
- Joel Roberts, Chow’s moving lemma, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, pp. 89–96. Appendix 2 to: “Motives” (Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), pp. 53–82, Wolters-Noordhoff, Groningen, 1972) by Steven L. Kleiman. MR 0382269
Bibliographic Information
- Zhaohu Nie
- Affiliation: Department of Mathematics, Penn State Altoona, 3000 Ivyside Park, Altoona, Pennsylvania 16601
- MR Author ID: 670293
- Email: znie@psu.edu
- Received by editor(s): October 1, 2007
- Received by editor(s) in revised form: September 30, 2008
- Published electronically: March 20, 2009
- Communicated by: Ted Chinburg
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 2529-2539
- MSC (2000): Primary 14F43, 14E99
- DOI: https://doi.org/10.1090/S0002-9939-09-09872-4
- MathSciNet review: 2497464