Optimal length estimates for stable CMC surfaces in $3$-space forms
HTML articles powered by AMS MathViewer
- by Laurent Mazet
- Proc. Amer. Math. Soc. 137 (2009), 2761-2765
- DOI: https://doi.org/10.1090/S0002-9939-09-09885-2
- Published electronically: March 18, 2009
- PDF | Request permission
Abstract:
In this paper, we study stable constant mean curvature $H$ surfaces in $\mathbb {R}^3$. We prove that, in such a surface, the distance from a point to the boundary is less than or equal to $\pi /(2H)$. This upper bound is optimal and is extended to stable constant mean curvature surfaces in space forms.References
- Philippe Castillon, An inverse spectral problem on surfaces, Comment. Math. Helv. 81 (2006), no. 2, 271–286 (English, with English and French summaries). MR 2225628, DOI 10.4171/CMH/52
- Tobias H. Colding and William P. Minicozzi II, Estimates for parametric elliptic integrands, Int. Math. Res. Not. 6 (2002), 291–297. MR 1877004, DOI 10.1155/S1073792802106106
- Jose M. Espinar and Harold Rosenberg. A Colding-Minicozzi stability inequality and its applications, to appear in Trans. Amer. Math. Soc.
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- H. Blaine Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335–374. MR 270280, DOI 10.2307/1970625
- William H. Meeks III, Joaquín Pérez, and Antonio Ros. Stable constant mean curvature surfaces, preprint.
- Antonio Ros and Harold Rosenberg. Properly embedded surfaces with constant mean curvature, preprint.
- Harold Rosenberg, Constant mean curvature surfaces in homogeneously regular 3-manifolds, Bull. Austral. Math. Soc. 74 (2006), no. 2, 227–238. MR 2260491, DOI 10.1017/S000497270003567X
- Richard Schoen, Estimates for stable minimal surfaces in three-dimensional manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 111–126. MR 795231
Bibliographic Information
- Laurent Mazet
- Affiliation: Laboratoire d’Analyse et Mathématiques Appliquées, Université Paris-Est, CNRS UMR8050, UFR des Sciences et Technologie, Bâtiment P3 4eme étage, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
- MR Author ID: 722767
- Email: laurent.mazet@math.cnrs.fr
- Received by editor(s): September 26, 2008
- Received by editor(s) in revised form: January 7, 2009
- Published electronically: March 18, 2009
- Communicated by: Richard A. Wentworth
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 2761-2765
- MSC (2000): Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9939-09-09885-2
- MathSciNet review: 2497490