Continuity of extremal elements in uniformly convex spaces
HTML articles powered by AMS MathViewer
- by Timothy Ferguson
- Proc. Amer. Math. Soc. 137 (2009), 2645-2653
- DOI: https://doi.org/10.1090/S0002-9939-09-09892-X
- Published electronically: March 17, 2009
Abstract:
In this paper, we study the problem of finding the extremal element for a linear functional over a uniformly convex Banach space. We show that a unique extremal element exists and depends continuously on the linear functional, and vice versa. Using this, we simplify and clarify Ryabykh’s proof that for any linear functional on a uniformly convex Bergman space with kernel in a certain Hardy space, the extremal function belongs to the corresponding Hardy space.References
- Dov Aharonov, Catherine Bénéteau, Dmitry Khavinson, and Harold Shapiro, Extremal problems for nonvanishing functions in Bergman spaces, Selected topics in complex analysis, Oper. Theory Adv. Appl., vol. 158, Birkhäuser, Basel, 2005, pp. 59–86. MR 2147588, DOI 10.1007/3-7643-7340-7_{5}
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Peter Duren and Alexander Schuster, Bergman spaces, Mathematical Surveys and Monographs, vol. 100, American Mathematical Society, Providence, RI, 2004. MR 2033762, DOI 10.1090/surv/100
- Dmitry Khavinson, John E. McCarthy, and Harold S. Shapiro, Best approximation in the mean by analytic and harmonic functions, Indiana Univ. Math. J. 49 (2000), no. 4, 1481–1513. MR 1836538, DOI 10.1512/iumj.2000.49.1787
- Dmitry Khavinson and Michael Stessin, Certain linear extremal problems in Bergman spaces of analytic functions, Indiana Univ. Math. J. 46 (1997), no. 3, 933–974. MR 1488342, DOI 10.1512/iumj.1997.46.1375
- Gottfried Köthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR 0248498
- V. G. Ryabykh, Extremal problems for summable analytic functions, Sibirsk. Mat. Zh. 27 (1986), no. 3, 212–217, 226 (Russian). MR 853902
- Harold S. Shapiro, Topics in approximation theory, Lecture Notes in Mathematics, Vol. 187, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg. MR 0437981
- Dragan Vukotić, Linear extremal problems for Bergman spaces, Exposition. Math. 14 (1996), no. 4, 313–352. MR 1418027
Bibliographic Information
- Timothy Ferguson
- Affiliation: Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, Michigan 48109-1043
- Email: tjferg@umich.edu
- Received by editor(s): September 9, 2008
- Published electronically: March 17, 2009
- Communicated by: Mario Bonk
- © Copyright 2009 Timothy Ferguson
- Journal: Proc. Amer. Math. Soc. 137 (2009), 2645-2653
- MSC (2000): Primary 30H05; Secondary 46B99
- DOI: https://doi.org/10.1090/S0002-9939-09-09892-X
- MathSciNet review: 2497477