From a Ramanujan-Selberg continued fraction to a Jacobian identity
HTML articles powered by AMS MathViewer
- by Hei-Chi Chan
- Proc. Amer. Math. Soc. 137 (2009), 2849-2856
- DOI: https://doi.org/10.1090/S0002-9939-09-09835-9
- Published electronically: March 4, 2009
- PDF | Request permission
Abstract:
Jacobi proved an elegant identity involving eight-fold infinite products. In this paper, we give a new proof of this identity. A key ingredient of our proof is an identity satisfied by a Ramanujan-Selberg continued fraction.References
- George E. Andrews, On $q$-difference equations for certain well-poised basic hypergeometric series, Quart. J. Math. Oxford Ser. (2) 19 (1968), 433–447. MR 237831, DOI 10.1093/qmath/19.1.433
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- G. E. Andrews, Bruce C. Berndt, Lisa Jacobsen, and Robert L. Lamphere, The continued fractions found in the unorganized portions of Ramanujan’s notebooks, Mem. Amer. Math. Soc. 99 (1992), no. 477, vi+71. MR 1124109, DOI 10.1090/memo/0477
- George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part I, Springer, New York, 2005. MR 2135178
- George E. Andrews and Kimmo Eriksson, Integer partitions, Cambridge University Press, Cambridge, 2004. MR 2122332, DOI 10.1017/CBO9781139167239
- Nayandeep Deka Baruah and Nipen Saikia, Modular relations and explicit values of Ramanujan-Selberg continued fractions, Int. J. Math. Math. Sci. , posted on (2006), Art. ID 54901, 15. MR 2251712, DOI 10.1155/IJMMS/2006/54901
- Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903, DOI 10.1007/978-1-4612-0965-2
- Bruce C. Berndt, Number theory in the spirit of Ramanujan, Student Mathematical Library, vol. 34, American Mathematical Society, Providence, RI, 2006. MR 2246314, DOI 10.1090/stml/034
- Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, and Seung Hwan Son, The Rogers-Ramanujan continued fraction, J. Comput. Appl. Math. 105 (1999), no. 1-2, 9–24. Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997). MR 1690576, DOI 10.1016/S0377-0427(99)00033-3
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
- H. C. Chan, Ramanujan’s cubic continued fraction and an analog of his “most beautiful identity”, to appear in International Journal of Number Theory.
- H. C. Chan, Ramanujan’s cubic continued fraction and Ramanujan type congruences for a certain partition function, to appear in International Journal of Number Theory.
- H. C. Chan, Distribution of a certain partition function modulo powers of primes, submitted.
- H. C. Chan, A new proof for two identities involving the Ramanujan’s cubic continued fraction, submitted.
- H. C. Chan and S. Ebbing, Fractorization theorems for the Rogers-Ramanujan continued fraction in the lost notebook, submitted.
- Heng Huat Chan and Sen-Shan Huang, On the Ramanujan-Göllnitz-Gordon continued fraction, Ramanujan J. 1 (1997), no. 1, 75–90. MR 1607529, DOI 10.1023/A:1009767205471
- W. Chu and L. Di Claudio, Classical Partition Identities and Basic Hypergeometric Series, UniversitĂ degli Studi di Lecce, Lecce, Italy, 2004.
- John A. Ewell, A note on a Jacobian identity, Proc. Amer. Math. Soc. 126 (1998), no. 2, 421–423. MR 1451797, DOI 10.1090/S0002-9939-98-04527-4
- H. Göllnitz, Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967), 154–190 (German). MR 211973, DOI 10.1515/crll.1967.225.154
- Basil Gordon, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741–748. MR 184001
- Michael D. Hirschhorn, An identity of Ramanujan, and applications, $q$-series from a contemporary perspective (South Hadley, MA, 1998) Contemp. Math., vol. 254, Amer. Math. Soc., Providence, RI, 2000, pp. 229–234. MR 1768930, DOI 10.1090/conm/254/03956
- Michael D. Hirschhorn, Ramanujan’s “most beautiful identity”, Austral. Math. Soc. Gaz. 32 (2005), no. 4, 259–262. MR 2176248
- K. G. Ramanathan, Ramanujan’s continued fraction, Indian J. Pure Appl. Math. 16 (1985), no. 7, 695–724. MR 801801
- Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
- A. Selberg, Über einige arithmetische Identitäten, Avh. Norske Vid.-Akad. Oslo I. Mat.-Naturv. Kl. 8 (1936), 3–23.
- G. N. Watson, Theorems stated by Ramanujan (VII): Theorems on continued fractions, J. London Math. Soc. 4 (1929), 39–48.
- G. N. Watson, Theorems stated by Ramanujan (IX): Two continued fractions, J. London Math. Soc. 4 (1929), 231–237.
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
- Liang Cheng Zhang, $q$-difference equations and Ramanujan-Selberg continued fractions, Acta Arith. 57 (1991), no. 4, 307–355. MR 1109991, DOI 10.4064/aa-57-4-307-355
- Liang-Cheng Zhang, Ramanujan’s class invariants, Kronecker’s limit formula and modular equations. II, Analytic number theory, Vol. 2 (Allerton Park, IL, 1995) Progr. Math., vol. 139, Birkhäuser Boston, Boston, MA, 1996, pp. 817–838. MR 1409396
- Liang-Cheng Zhang, Ramanujan’s class invariants, Kronecker’s limit formula and modular equations. III, Acta Arith. 82 (1997), no. 4, 379–392. MR 1483690, DOI 10.4064/aa-82-4-379-392
- Liang-Cheng Zhang, Explicit evaluations of a Ramanujan-Selberg continued fraction, Proc. Amer. Math. Soc. 130 (2002), no. 1, 9–14. MR 1855613, DOI 10.1090/S0002-9939-01-06183-4
Bibliographic Information
- Hei-Chi Chan
- Affiliation: Department of Mathematical Sciences, University of Illinois at Springfield, Springfield, Illinois 62703-5407
- Email: chan.hei-chi@uis.edu
- Received by editor(s): October 9, 2008
- Received by editor(s) in revised form: November 24, 2008
- Published electronically: March 4, 2009
- Communicated by: Ken Ono
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856
- MSC (2000): Primary 05A15, 05A30, 05A40
- DOI: https://doi.org/10.1090/S0002-9939-09-09835-9
- MathSciNet review: 2506441