
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 9, September 2009, Pages 2879–2887
S 0002-9939(09)09845-1
Article electronically published on March 27, 2009

ON SUMS INVOLVING COEFFICIENTS
OF AUTOMORPHIC L-FUNCTIONS

GUANGSHI LÜ

(Communicated by Wen-Ching Winnie Li)

Abstract. Let L(s, π) be the automorphic L-function associated to an auto-
morphic irreducible cuspidal representation π of GLm over Q, and let aπ(n)
be the nth coefficient in its Dirichlet series expansion. In this paper we prove

that if at every finite place p, πp is unramified, then for any ε > 0,

Aπ(x) =
∑
n≤x

aπ(n) �ε,π

⎧⎨
⎩

x
71
192+ε if m = 2,

x
m2−m
m2+1

+ε
if m ≥ 3.

1. Introduction and main results

Let a(n) be an arithmetic function. It is an important problem in number theory
to establish the asymptotic formula for the summatory function

A(x) =
∑
n≤x

a(n).

The asymptotic behavior of A(x) is often closely linked with the analytic properties
of the Dirichlet series

A(s) =
∞∑

n=1

a(n)n−s.

The Langlands program predicts that the most general L-functions arise from
automorphic representations of GLn over a number field and that such L-functions
can be decomposed into products of primitive automorphic L-functions arising from
irreducible cuspidal representations of GLm over Q. Therefore in this paper we focus
our attention on primitive automorphic L-functions of GLm over Q.

To be precise, let us recall some basic facts about primitive automorphic L-
functions of GLm over Q (see Godement and Jacquet [4], Jacquet and Shalika
[8], or Rudnick and Sarnak [11]). Let π be an automorphic irreducible cuspidal
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2880 GUANGSHI LÜ

representation of GLm over Q with unitary central character. Then π is a restricted
tensor product:

π = ⊗pπp.

To π one associates an Euler product

L(s, π) =
∏
p

L(s, πp)(1.1)

given by a product of local factors. Outside of a finite set of primes, πp is unramified.
To every finite place p where πp is unramified we associate a semisimple conjugacy
class

Aπ(p) =

⎛
⎜⎝

απ,p(1),
. . .

απ,p(m)

⎞
⎟⎠ ,

and we define the local L-function for the finite place p as

L(s, πp) = det(I − p−sAπ(p))−1 =
m∏

j=1

(1 − απ,p(j)p−s)−1.(1.2)

It is possible to write the local factors at ramified primes p in the form of (1.2) with
the convention that some of the απ,p(j)’s may be zero. In fact, the local factors at
the ramified primes can best be described by the Langlands parameters of πp.

The general Ramanujan conjectures for cuspidal automorphic representations π
of GLm over Q assert that for p unramified, |απ,p(j)| = 1. For certain π, this
conjecture has been proved. But in general it is still open. In this direction, Serre
[12] first observed that the analytic properties of the Rankin-Selberg L-function, in
conjunction with Landau’s lemma, can lead to

|απ,p(j)| ≤ p1/2−1/(m2+1).(1.3)

For m = 2, this has been refined in [9] to

|απ,p(j)| ≤ p
7
64 .(1.4)

The product (1.1) over primes gives a Dirichlet series representation: for Res > 1,

L(s, π) =
∞∑

n=1

aπ(n)
ns

.(1.5)

The aim of this paper is to study the summatory function for the coefficients
aπ(n) of automorphic L-functions attached to automorphic irreducible cuspidal
representations of GLm over Q, i.e.

Aπ(x) =
∑
n≤x

aπ(n).

Our main result is the following.

Theorem 1.1. Let L(s, π) be the automorphic L-function associated to an auto-
morphic irreducible cuspidal representation π of GLm over Q, and let aπ(n) be its
nth coefficient in (1.5). If at every finite place p, πp is unramified, then we have
that for any ε > 0,

Aπ(x) =
∑
n≤x

aπ(n) �ε,π

{
x

71
192+ε if m = 2,

x
m2−m

m2+1
+ε if m ≥ 3,
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ON SUMS INVOLVING COEFFICIENTS OF AUTOMORPHIC L-FUNCTIONS 2881

where throughout this paper the notation �ε,π means that the implied constant
depends on ε and π.

Our Theorem 1.1, for which the Ramanujan-Petersson conjecture is not known
to hold, can be compared with the results of Iwaniec and Friedlander [3]: if the
Ramanujan-Petersson conjecture is assumed, then the coefficients a(n) of a general
L-function of degree m with a functional equation and suitable analytic properties
satisfy ∑

n≤x

a(n) = main term + OL(x
m−1
m+1 +ε).

Our result can also be compared with one result of Miller [10], which states that
for any ε > 0 and any real number α,∑

n≤x

a(m, n)e(nα) �ε,m,Φ x
3
4+ε,

where a(m, n) are the Fourier coefficients of a cusp form Φ for GL(3, Z)\GL(3, R).
As an application of our Theorem 1.1, we shall consider the sum∑

n≤x

t(n2),

where t(n) is the nth normalized Fourier coefficient of a Hecke-Maass cusp form ϕ
corresponding to the eigenvalue l = κ2 + 1

4 with respect to the full modular group
SL(2, Z), which coincides with the eigenvalue of the nth Hecke operator Tn.

Corollary 1.2. Let t(n) be the nth normalized Fourier coefficient of a Hecke-Maass
cusp form ϕ with respect to the full modular group SL(2, Z). Then for any ε > 0,
we have

S(x) =
∑
n≤x

t(n2) �ε,ϕ x
3
5+ε,

where throughout this paper the notation �ε,ϕ means that the implied constant
depends on ε and the Maass cusp form ϕ.

Our result improves a previous result given by Ivić [6]:

S(x) �ϕ x exp
(
−A(log x)

3
5 (log log x)−

1
5

)
,

where A > 0 is a suitable constant.

2. Three lemmas

To prove Theorem 1.1, we need the following three lemmas.

Lemma 2.1. Let L(f, s) be a Dirichlet series with Euler product of degree m ≥ 1,
which is defined by

L(f, s) =
∞∑

n=1

λf (n)n−s =
∏

p<∞

m∏
j=1

(
1 − αf (p, j)

ps

)−1

,

where αf (p, j), j = 1, · · · , m, are the local parameters of L(f, s) at prime p. This
series and Euler product are absolutely convergent for Res > 1. Let the gamma
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factor be given by

L∞(f, s) =
m∏

j=1

π− s+µf (j)
2 Γ

(
s + µf (j)

2

)
,

where µf (j), j = 1, · · · , m, are the local parameters of L(f, s) at ∞. We also define
the completed L-function Λ(f, s) by

Λ(f, s) = q(f)
s
2 L∞(f, s)L(f, s),

where q(f) is the conductor of L(f, s). We assume that Λ(f, s) admits an analytic
continuation to the whole complex plane C and is an entire function. Assume that
it also satisfies a functional equation

Λ(f, s) = εfΛ(f̃ , 1 − s)

where εf is the root number with |εf | = 1 and f̃ is the dual of f such that λf̃ (n) =
λf (n), µf̃ (j) = µf (j), and q(f̃) = q(f).

Then for every η ≥ 0 we have∑
n≤x

λf (n) �f x
1
2−

1
2m +( m

2 − 1
2 )η +

∑
x<n≤x+x1− 1

m
−η

|λf (n)|.

Proof. This is a special case of Theorem 4.1 in Chandrasekharan and Narasimhan
[2] with

δ = 1, A =
m

2
, β = 1, u =

1
2
− 1

2m
and q = −∞.

We reformulate it in the language used in Chapter 5 of Iwaniec and Kowalski [7].

Lemma 2.2. With the same notation as in Lemma 2.1, we assume that the Dirich-
let series L(f, s) with Euler product of degree m ≥ 1 has non-negative coefficients,
i.e. λf (n) ≥ 0, and converges for Res sufficiently large. Suppose further that L(f, s)
has a meromorphic continuation to C with, at most, poles of finite order at s = 0, 1.
Assume also that L(f, s) is of finite order and satisfies a functional equation

Λ(f, s) = εfΛ(f, 1 − s).

Then we have that for any ε > 0,∑
n≤x

λf (n) = P (log x)x + Oε,f

(
x

m−1
m+1 +ε

)
,

where P is a polynomial depending only on L, whose degree equals the order of the
pole of L(f, s) at s = 1.

Proof. This is a refined version of Landau’s lemma; see Barthel and Ramakrishnan
[1].

Lemma 2.3. Let b(1), b(2), ... be a sequence of complex numbers. Define the
sequence a(0) = 1, a(1), a(2), ... by means of the formal identity

exp

( ∞∑
k=1

b(k)
k

xk

)
=

∞∑
n=0

a(n)xn.
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For j = 1 or 2, define the sequence Aj(0) = 1, Aj(1), Aj(2), ... by means of the
formal identity

exp

( ∞∑
k=1

|b(k)|j
k

xk

)
=

∞∑
n=0

Aj(n)xn.

Then Aj(n) ≥ |a(n)|j.

Proof. See Lemma 3.1 in Soundararajan [13].

3. Proof of Theorem 1.1

Associated with π, an automorphic representation of GLm over Q, there is also
an Archimedean L-factor defined as

L(s, π∞) =
m∏

j=1

π− s+µπ(j)
2 Γ

(
s + µπ(j)

2

)
,

where µπ(j), j = 1, 2, 3, · · · , m, are local parameters at ∞. In connection with
(1.1), the completed L-function associated to π is defined by

Λ(s, π) = L(s, π∞)L(s, π).

This completed L-function has analytic continuation, is entire everywhere (note
that in our case m ≥ 2), and satisfies the functional equation

Λ(s, π) = επq
1
2−s
π Λ(1 − s, π̃),(3.1)

where π̃ is the contragredient of π, επ is a complex number of modulus 1, and qπ is
a positive integer called the arithmetic conductor of π. For any place p ≤ ∞, π̃p is
equivalent to the complex conjugate πp, and we have

{απ̃,p(j)} = {απ,p(j)}, {µπ̃(j)} = {µπ(j)}.

Therefore, from Lemma 2.1 and (3.1), we have

Aπ(x) =
∑
n≤x

aπ(n) �π x
1
2−

1
2m +( m

2 − 1
2 )η +

∑
x<n≤x+x1− 1

m
−η

|aπ(n)|,(3.2)

for every η ≥ 0.
For m = 2, from (1.4) we have

|aπ(n)| ≤ τ (n)n
7
64 ,(3.3)

where τ (n) is the divisor function. From (3.2) with m = 2, we have

Aπ(x) =
∑
n≤x

aπ(n) �π x
1
4+ 1

2η +
∑

x<n≤x+x
1
2 −η

|aπ(n)|.(3.4)

From (3.3), we obtain

Aπ(x) �π x
1
4+ 1

2 η + x
39
64−η+ε.(3.5)

On taking η = 23
96 , we have

Aπ(x) �π x
71
192+ε.(3.6)
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In order to give the result for m ≥ 3, we recall some basic facts about the
Rankin-Selberg L-function L(s, π × π̃) associated to π and its contragredient π̃. It
is defined as a product of local factors:

L(s, π × π̃) =
∏
p

L(s, πp × π̃p).(3.7)

For unramified primes p, the local factor is given by

L(s, πp × π̃p) =
m∏

j=1

m∏
k=1

(1 − απ,p(j)απ,p(k)p−s)−1.(3.8)

It can be defined similarly at primes p where πp is ramified. By (1.3), the product∏
p L(s, πp × π̃p) converges absolutely on Res > 2 − 2

m2+1 (in fact on Res > 1; see
e.g. Jacquet and Shalika [8] or Rudnick and Sarnak [11] ). We write this product
as a Dirichlet series:

L(s, π × π̃) =
∏
p

∞∑
k=0

aπ×π̃(pk)
pks

=
∞∑

n=1

aπ×π̃(n)
ns

.(3.9)

The completed Rankin-Selberg L-function is defined by

Λ(s, π × π̃) = L(s, π∞ × π̃∞)L(s, π × π̃)

with

L(s, π∞ × π̃∞) =
m2∏
j=1

π− s+µπ×π̃(j)
2 Γ

(
s + µπ×π̃(j)

2

)
.

When π∞ is unramified,

{µπ×π̃(j)}1≤j≤m2 = {µπ(j) + µπ(k)}1≤j≤m,1≤k≤m.

It is known that aπ×π̃(n) ≥ 0 and L(s, π × π̃) has a simple pole at s = 1. The
completed Rankin-Selberg L-function Λ(s, π × π̃) has a meromorphic continuation
to the entire complex plane and satisfies a functional equation

Λ(s, π × π̃) = επ×π̃q
1
2−s
π×π̃Λ(1 − s, π × π̃),

where |επ×π̃| = 1 and qπ×π̃ > 0.
Therefore by applying Lemma 2.2 to L(s, π × π̃) with degree m2, we have∑

n≤x

aπ×π̃(n) = cπx + Oε,π(x
m2−1
m2+1

+ε),(3.10)

where cπ is a positive constant.
From (3.10), we find that for any η ≥ 0,∑

x<n≤x+x1− 1
m

−η

aπ×π̃(n) �ε,π x
m2−1
m2+1

+ε
.(3.11)

From (3.7), (3.8) and (3.9), we have that for Res > 2 − 2
m2+1 ,

∞∑
k=0

aπ×π̃(pk)
pks

= exp

( ∞∑
v=1

|λπ(pv)|2

v
p−vs

)
,(3.12)
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where

λπ(pv) =
m∑

j=1

απ,p(j)v.

From (1.1), (1.2) and (1.5), we have

∞∑
k=0

aπ(pk)
pks

= exp

( ∞∑
v=1

λπ(pv)
v

p−vs

)
.(3.13)

From (3.12), (3.13) and Lemma 2.3 with j = 2, we have that for an unramified
prime p,

|aπ(pk)|2 ≤ aπ×π̃(pk),

and thus in our case

|aπ(n)|2 ≤ aπ×π̃(n).

Therefore we have ∑
x<n≤x+x1− 1

m
−η

|aπ(n)|2 �
∑

x<n≤x+x1− 1
m

−η

aπ×π̃(n).(3.14)

Now we begin to estimate (3.2). By Cauchy’s inequality, we find that the short-
interval sum in (3.2) satisfies

∑
x<n≤x+x1− 1

m
−η

|aπ(n)| ≤

⎛
⎜⎝ ∑

x<n≤x+x1− 1
m

−η

|aπ(n)|2

⎞
⎟⎠

1
2

⎛
⎜⎝ ∑

x<n≤x+x1− 1
m

−η

1

⎞
⎟⎠

1
2

.(3.15)

By (3.11) and (3.14), we have

∑
x<n≤x+x1− 1

m
−η

|aπ(n)|2 �ε,π x
m2−1
m2+1

+ε
.(3.16)

From (3.15) and (3.16), we obtain

∑
x<n≤x+x1− 1

m
−η

|aπ(n)| �ε,π x
1
2−

1
2m− η

2 + m2−1
2m2+2

+ε
.(3.17)

Inserting (3.17) into (3.2), we have

Aπ(x) =
∑
n≤x

aπ(n) �ε,π x
1
2−

1
2m +( m

2 − 1
2 )η + x

1
2−

1
2m− η

2 + m2−1
2m2+2

+ε
.

On taking η = m2−1
m(m2+1) , we get

Aπ(x) �ε,π x
m2−m

m2+1
+ε

.

This completes the proof of Theorem 1.1.
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4. Proof of Corollary 1.2

To prove Corollary 1.2, we recall some basic facts from the books of Iwaniec and
Kowalski [7], and of Goldfeld [5]. Associated to each Hecke-Maass cusp form ϕ for
the full modular group SL(2, Z) there is an L-function L(ϕ, s), which is defined,
for Res > 1, by

L(ϕ, s) =
∞∑

n=1

t(n)n−s =
∏
p

(1 − t(p)p−s + p−2s)−1

=
∏
p

(
1 − αp

ps

)−1 (
1 −

α′
p

ps

)−1

with αp + α′
p = t(p) and αpα

′
p = 1. The symmetric square L-function L(Sym2ϕ, s)

is defined, for Res > 1, by

L(Sym2ϕ, s) = ζ(2s)
∞∑

n=1

t(n2)n−s

=
∏
p

(
1 −

α2
p

ps

)−1 (
1 − 1

ps

)−1
(

1 −
α′

p
2

ps

)−1

,

where ζ(s) is the Riemann zeta-function. Then we have
∞∑

n=1

t(n2)n−s =
L(Sym2ϕ, s)

ζ(2s)
.(4.1)

This gives

t(n2) =
∑
d2|n

µ(d)t(2)
( n

d2

)
,(4.2)

where t(2)(n) is the nth coefficient of the symmetric square L-function L(Sym2ϕ, s)
with Res > 1.

It follows from the Gelbart-Jacquet lift that L(Sym2ϕ, s) is an automorphic L-
function of GL3. Then from Theorem 1.1 with m = 3, we have∑

n≤x

t(2)(n) � x
3
5+ε.(4.3)

From (4.2) and (4.3), we have

S(x) =
∑
n≤x

t(n2) � x
3
5+ε.

This completes the proof of Corollary 1.2.
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