A constructive bound on kissing numbers
HTML articles powered by AMS MathViewer
- by Chaoping Xing
- Proc. Amer. Math. Soc. 137 (2009), 2953-2957
- DOI: https://doi.org/10.1090/S0002-9939-09-09888-8
- Published electronically: April 3, 2009
- PDF | Request permission
Abstract:
In the present paper, by making use of the concatenation of $17^2-1=288$ points on the sphere of radius $4$ in $\mathbb {R}^{16}$ and subcodes of algebraic geometry codes over $\mathbb {F}_{17^2}$, we improve the best-known constructive bound on kissing numbers by A. Vardy.References
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- Arnaldo García and Henning Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfel′d-Vlăduţ bound, Invent. Math. 121 (1995), no. 1, 211–222. MR 1345289, DOI 10.1007/BF01884295
- G. A. Kabatjanskiĭ and V. I. Levenšteĭn, Bounds for packings on the sphere and in space, Problemy Peredači Informacii 14 (1978), no. 1, 3–25 (Russian). MR 0514023
- San Ling and Chaoping Xing, Coding theory, Cambridge University Press, Cambridge, 2004. A first course. MR 2048591, DOI 10.1017/CBO9780511755279
- Harald Niederreiter and Chaoping Xing, Rational points on curves over finite fields: theory and applications, London Mathematical Society Lecture Note Series, vol. 285, Cambridge University Press, Cambridge, 2001. MR 1837382, DOI 10.1017/CBO9781107325951
- Claude E. Shannon, Probability of error for optimal codes in a Gaussian channel, Bell System Tech. J. 38 (1959), 611–656. MR 103137, DOI 10.1002/j.1538-7305.1959.tb03905.x
- M. A. Tsfasman and S. G. Vlăduţ, Algebraic-geometric codes, Mathematics and its Applications (Soviet Series), vol. 58, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian by the authors. MR 1186841, DOI 10.1007/978-94-011-3810-9
- A. D. Wyner, Capabilities of bounded discrepancy decoding, Bell System Tech. J. 44 (1965), 1061–1122. MR 180417, DOI 10.1002/j.1538-7305.1965.tb04170.x
Bibliographic Information
- Chaoping Xing
- Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Republic of Singapore
- MR Author ID: 264368
- Email: xingcp@ntu.edu.sg
- Received by editor(s): October 20, 2008
- Received by editor(s) in revised form: January 9, 2009
- Published electronically: April 3, 2009
- Additional Notes: The author was supported by the Singapore MOE Tier 2 grant T208B2206 and the National Scientific Research Project 973 of China 2004CB318000
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2009 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 2953-2957
- MSC (2000): Primary 11H06, 11H31, 05B40, 94B75
- DOI: https://doi.org/10.1090/S0002-9939-09-09888-8
- MathSciNet review: 2506453