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LACUNARITY OF CERTAIN PARTITION-THEORETIC
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(Communicated by Jim Haglund)

Abstract. We consider a certain family of infinite products, denoted fa,b,
which were introduced by Han as a generalization of the Nekrasov-Okounkov
formula. Extending the work of Serre on powers of Dedekind’s η-function, we
investigate the integers a and b for which “almost all” of the Fourier coefficients
of fa,b are zero (forms with this property are referred to as lacunary). We give

the complete list of pairs (a, b), where b is odd, for which fa,b is lacunary.

1. Introduction and statement of results

In the theory of partitions, generating functions are a prevalent and useful tool.
Perhaps the most famous of these is the generating function for the partition func-
tion p(n):

∞∑
n=0

p(n)qn =
∞∏

n=1

1
1 − qn

.

The subject is also home to a number of beautiful identities, such as the following,
due respectively to Euler, Jacobi, and Jacobi:

∞∏
n=1

(1 − qn) =
∑
k∈Z

(−1)kq(3k2+k)/2,(1.1)

∞∏
n=1

(1 − qn)3 =
∑
k∈Z

(−1)k(2k + 1)q(k2+k)/2,(1.2)

∞∏
n=1

(1 − qn)2

1 − q2n
=

∑
k∈Z

(−1)kqk2
.(1.3)

While these identities can be stated combinatorially, they have partition-theoretic
interpretations. All are related to modular forms, thanks to the fact that Dedekind’s
η-function,

η(z) = q
1
24

∞∏
n=1

(1 − qn)

(where q = e2πiz, Im(z) > 0), is a weight-1
2 modular form.
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A series
∞∑

n=0
a(n)qn is said to be lacunary if “almost all” of its coefficients are

zero, that is, if

lim
x→∞

#{0 ≤ n < x : a(n) = 0}
x

= 1.

We note, in particular, that the series appearing in the identities (1.1), (1.2), and
(1.3) are all lacunary.

In light of examples such as these, a natural question arises: for which exponents
r is it the case that

fr(z) =
∞∏

n=1

(1 − qn)r =
∞∑

n=0

τr(n)qn

is lacunary? In [10], Serre proved that, given a positive even integer r, the series
fr(z) is lacunary if and only if r ∈ {2, 4, 6, 8, 10, 14, 26}.

Remark. The situation is not as well-understood when r is odd, since in this case,
ηr has half-integral weight. Although it is clear from (1.1) and (1.2) that f1 and f3

are lacunary, little is known beyond this for odd r ≥ 5. The best result in this di-
rection is due to Ono [7], who proved lower bounds for the number of non-vanishing
coefficients of the Fourier expansions of half-integral weight modular forms. In the
case of powers of η, his result implies for odd r ≥ 5 that

#{n < x : τr(n) �= 0} �r x/ log x.

A combinatorial interpretation is useful in motivating the investigation of the
lacunarity of these series. Toward this end, we recall a fundamental result of Mac-
donald, in which it is demonstrated that the products ηt2−1(z) can in fact be viewed
as combinatorial generating functions arising from the theory of infinite-dimensional
Lie algebras. For odd positive integers t, he showed that

ηt2−1(z) = c0

∑
(v0,...,vt−1)

∏
i<j

(vi − vj)q(v2
0+v2

1+···+v2
t−1)/(2t).

Here, c0 is an absolute numerical constant, and the sum ranges over all V -codings,
that is, vectors of integers (v0, v1, . . . , vt−1) such that vi ≡ i (mod t) for each i and
v0 + · · · + vt−1 = 0.

Recall that, given a Ferrers diagram associated to a partition, each square u can
be labeled with a hooklength, an integer that counts the number of squares v such
that either v is in the same row as u and to the right, v is in the same column as
u and below, or v = u. For example, we have:

7 6 4 2 1
4 3 1
2 1

Figure 1. The Ferrers diagram of λ = 5 + 3 + 2 with hooklengths.

Recently, using notions such as these, Nekrasov and Okounkov generalized the
result of Macdonald to include all powers of η and reformulated his identity in a
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partition-theoretic way. They showed that for any complex number b we have
∑
λ∈P

q|λ|
∏

h∈H(λ)

(
1 − b

h2

)
=

∏
n≥1

(1 − qn)b−1,

where P denotes the set of all partitions, H(λ) denotes the multiset of hooklengths
of a partition λ, and |λ| denotes the size of λ.

From this perspective, then, Serre’s theorem can be viewed as a characterization
of the situations in which the partitions of an integer n exhibit dramatic cancellation
after being weighted in a particular combinatorial way. This strikingly resembles
Franklin’s proof of Euler’s identity (1.1), which utilizes the observation that for
all integers n not expressible as 3k2+k

2 , the number of partitions of n into an even
number of distinct parts equals the number of partitions of n into an odd number
of distinct parts.

A partition λ is said to be a t-core1 if H(λ) does not contain the integer t. These
objects have a variety of implications in number theory; for example, Garvan, Kim
and Stanton demonstrate in [3] the relevance of t-cores to certain combinatorial
proofs of the famous Ramanujan congruences. In an important paper by Han
[4], the Nekrasov-Okounkov formula was generalized to incorporate the notion of
t-cores. For a ∈ Z+, Han showed (Theorem 1.3, y = 1 case) that

(1.4)
∑
λ∈P

q|λ|
∏

h∈Ha(λ)

(
1 − ab

h2

)
=

∏
n≥1

(1 − qan)b

(1 − qn)
,

where Ha(λ) denotes the multiset of hooklengths of λ that are multiples of a. When
a = 1, the identity of Nekrasov and Okounkov is recovered.

In view of Serre’s work, combined with Han’s partition-theoretic interpretation,
we prove the following theorem:

Theorem 1.1. Define

(1.5) fa,b(z) := q
ab−1
24

∏
n≥1

(1 − qan)b

(1 − qn)
.

The complete list of pairs (a, b), where a and b are integers with b odd, for which
fa,b(z) is lacunary is given in Table 1 below.

Table 1. Pairs (a, b) with b odd for which fa,b is lacunary

a b such that fa,b is lacunary
1 {3, 5, 7, 9, 11, 15, 27}
2 {3, 5, 7}
3 {3, 5, 9}
4 {5, 7}
5 {7, 11}
6 ∅

7 {9, 15}

1The condition we give is equivalent to the assertion that none of the hooklengths are multiples
of t, which is therefore often used as the definition of a t-core.
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Remark. When a = 1, the theorem is Serre’s result on powers of η.

This result depends critically on the theory of modular forms. In particular, our
arguments are inspired by those utilized by Serre in [10], wherein lacunary forms are
identified with modular forms with complex multiplication (briefly, “CM”). Strictly
speaking, the generalization of Serre’s argument implies that for each a there are at
most finitely many odd b such that fa,b is lacunary (see Lemma 3.2 below). This,
however, does not preclude the possibility that there are infinitely many lacunary
fa,b. To obtain the stronger result, we make use of the Pólya-Vinogradov Inequality
for short character sums.

In Section 2, we prove the modularity properties of fa,b using Dedekind’s η-
function, and we recall the notions from the theory of modular forms with complex
multiplication that will be necessary for the proof of Theorem 1.1. In Section 3,
we give the proof of the theorem. Finally, in Section 4, we demonstrate an explicit
representation of several of the forms listed in Table 1 as a linear combination of
CM forms.

2. Modular forms

2.1. Dedekind’s η-function and fa,b(z). Recall that Dedekind’s η-function is
defined by the infinite product

η(z) = q
1
24

∏
n≥1

(1 − qn),

where q = e2πiz and Im(z) > 0. We know (see, for example, [1]) the transformation
properties of η under the two generators of the full modular group,

η(z + 1) = eπi/12η(z),

η(−1/z) = (−iz)1/2η(z),

from which one can deduce (see, for example, [8]) that η(24z) is a modular form of
weight 1

2 over Γ0(576), with Nebentypus character

χ12(n) :=
(

12
n

)
.

Equipped with the above facts about η(z), one can compute the transformation
properties of any function of the form∏

δ|N
η(δz)rδ .

Such functions are referred to as eta-quotients.
Let a ∈ Z+, b ∈ Z, and define fa,b(z) as in (1.5). We state the conditions on a and

b under which, after a possible change of variable, this function is a meromorphic,
holomorphic, or cuspidal modular form. The proof of this result is omitted, as the
criteria required to check its validity appear, for example, in Theorem 1.64 of [8].

Lemma 2.1. Let fa,b(z) be as in (1.5). Then fa,b(24z) is a weakly holomorphic
modular form of weight b−1

2 over Γ0(576a), with Nebentypus character

χf (d) =

⎧⎪⎨
⎪⎩

(
(−1)

b−1
2 a

d

)
if b is odd,

(
3
d

)
if b is even.
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Furthermore, fa,b(z) is holomorphic when b ≥ a and cuspidal when b > a.

Remark. Notice that in the above lemma, the level 576a is not necessarily optimal.
In general, all that is required is that the level is (mn)a for positive integers m
and n such that m(ab − 1) ≡ 0 (mod 24) and n(b − a) ≡ 0 (mod 24) (see [8],
Theorem 1.64).

2.2. Modular forms with CM. Let f be a weakly holomorphic modular form
of integral weight at least two. If f has a pole at one of the cusps, the Hardy-
Littlewood circle method (see, for example [1]) gives sufficient estimates for the
magnitude of the coefficients of the Fourier expansion of f to conclude that f cannot
be lacunary. Also, if f is holomorphic but not cuspidal, then we can express f as
a linear combination of the Eisenstein series together with a cusp form; from here,
the known bounds on the coefficients of such forms (for example, in [6]) similarly
preclude lacunarity of f .

In addition, we recall that a classical result of Deligne and Serre (Proposition 9.7
of [2]) confirms that every weight-one holomorphic form on a congruence subgroup
is lacunary. To prove this, they make use of exact formulas for coefficients of the
Eisenstein series and their results on 2-dimensional complex Galois representations
associated to weight-one modular forms.

Combining the various observations above, we see that in studying lacunarity of
the forms fa,b, we may restrict our attention to the space of cusp forms of level N ,
integer weight k ≥ 2, and Nebentypus ε, which we denote by S(N, k, ε). It has been
proven by Serre (Theorem 17 of [9]) that an element of S(N, k, ε) is lacunary if and
only if it is expressible as a linear combination of forms with CM, so we present a
characterization of such forms below.

Denote by Scm(N, k, ε) the subspace of S(N, k, ε) generated by the forms with
CM. This space has a basis given by a collection of forms associated to Hecke
characters [10]:

Let K be an imaginary quadratic field of discriminant d, and let εK be the
quadratic character associated to K; that is, εK(p) = (d

p ) for all primes p not
dividing 2|d|. Let c be a Hecke character on K with exponent k − 1 and conductor
fc. To c we can associate a Dirichlet character ωc, defined by

ωc(n) = c(nOK)/nk−1 for all n ∈ Z coprime to fc.

For any δ ∈ Z+, we define

ϕK,c,δ(z) =
∑

a

c(a)qδ·N(a),

where the sum runs through ideals of OK coprime to fc and N(a) denotes the norm
of a. With this definition, ϕK,c,δ is a modular form of weight k and character εKωc

over Γ0(δ · |d| · N(fc)). In order for ϕK,c,δ to be of the level, weight, and character
necessary to be an element of S(N, k, ε), the following two conditions are necessary
and sufficient:

δ · |d| · N(fc) | N,(2.1)

εKωc = ε.(2.2)

The ϕK,c,δ satisfying (2.1) and (2.2) are exactly the generators of Scm(N, k, ε).
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3. Proof of Theorem 1.1

In this section, we provide the proof of Theorem 1.1. Recall, first, that given
a modular form f(z) =

∑
a(n)qn of integer weight k, level N , and Nebentypus

character χ, the action of the Hecke operator Tm on f is defined by

f(z)|Tm =
∞∑

n=0

⎛
⎝ ∑

d| gcd(m,n)

χ(d)dk−1a(mn/d2)

⎞
⎠ qn,

where χ(n) = 0 if gcd(N, n) �= 1. When m = p is a prime, this definition reduces
to

f(z)|Tp =
∞∑

n=0

(a(pn) + χ(p)pk−1a(n/p))qn.

(When p does not divide n, we define a(n/p) to be zero.)
We begin with a preliminary lemma. Its proof is well-known and similar to that

of Lemma 1 of [10], so it will be omitted here. It should be noted, however, that the
proof utilizes the fact that the forms ϕk,c,δ are eigenforms of all Hecke operators
Tn such that gcd(N, n) = 1. The statement is as follows:

Lemma 3.1. Let g ∈ Scm(N, k, ε). If n is an integer such that gcd(N, n) = 1 and
there is no ideal of norm n in Q(

√
−d) for any d > 0 with d|N , then g|Tn = 0.

This result can be used to show that for a fixed a, the odd b for which fa,b is
potentially lacunary represent the zeros of a finite collection of polynomials and are
therefore a finite set.

Lemma 3.2. For each a ∈ Z+, there are at most finitely many odd b for which fa,b

is lacunary.

Proof. Let a ∈ Z+ be fixed, and choose n as in Lemma 3.1. We claim that there are
at most finitely many odd values of b such that fa,b(24z)|Tn = 0. The above lemma
shows that these are the only possible candidates for lacunarity, thereby proving
the claim.

We assume, for the sake of simplicity, that n = p is a prime; the proof is es-
sentially the same in the general case. Let the coefficients Aa,b be defined by the
expansion

(3.1) fa,b(24z) = qab−1
∏
n≥1

(1 − q24an)b

1 − q24n
=

∑
n≥0

Aa,b(n)q24n+ab−1.

Then

fa,b(24z)|Tp =
∑
n≥0

p|24n+ab−1

Aa,b(n)q
24n+ab−1

p + χf (p)p
b−3
2

∑
n≥0

Aa,b(n)qp(24n+ab−1).

Let n0 be the smallest n such that p|24n+ab−1. Then it must be the case that
0 ≤ n0 ≤ p − 1. By construction, 24n0+ab−1

p is the smallest exponent appearing in
the first summation above. Furthermore, all of the terms after the first term in the
second summation have exponent at least p(24 + ab− 1) ≥ 24 + ab−1

p > 24n0+ab−1
p .

Also, one easily checks that for a ≥ 2 it is not possible to have 24n0+ab−1
p = p(ab−1),

so we conclude that the exponent 24n0+ab−1
p appears nowhere else in the Fourier
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expansion of fa,b(24z)|Tp. Thus, to show that fa,b(24z)|Tp �= 0 it is sufficient to
verify that Aa,b(n0) �= 0.

Notice that

(3.2)
∏
n≥1

(1 − q24an)b

1 − q24n
=

∏
n≥1

(1 + q24n + · · · + q24n(a−1))(1 − q24an)b−1.

We observe that for fixed a and n, the coefficients Aa,b(n) may be viewed as poly-
nomials in b; moreover, the degree of Aa,b(n) is bounded by �n

a 	. To motivate these
observations, we exhibit the construction of A2,b(4). Considering the possible ways
that terms from the product in (3.2) could multiply to q96, we see that

A2,b(4) = −
(

b − 1
1

)
+

(
b − 1

2

)
−

(
b − 1

1

)
+ 1 + 1

=
b2 − 7b + 10

2
.

When b = 1, none of these coefficients are zero; that is, none of the polynomials
Aa,b(n) for a given n has a root at b = 1. Therefore, we conclude that none of
the polynomials are identically zero, so each has at most finitely many roots. This
proves that there are at most finitely many b such that Aa,b(n0) = 0, and hence
such that fa,b(24z)|Tp = 0, so the lemma is proved. �

To complete the proof of Theorem 1.1, we will use the preceding lemmas in con-
junction with the Pólya-Vinogradov Inequality, which implies that, given a non-
trivial Dirichlet character χ with modulus m, the following holds:

(3.3)
∣∣∣

h∑
x=1

χ(x)
∣∣∣ ≤ 2

√
m log(m).

Proof of Theorem 1.1. Let a be fixed and let a′ be the largest square-free divisor
of 6a, that is, the square-free part of the level of fa,b. Define ψp(n) =

(−p
n

)
.

Recall that to satisfy the conditions of Lemma 3.1, we must choose an integer
n that is relatively prime to the level of fa,b and such that there does not exist
an ideal of norm n in Q(

√
−d) for any d dividing the level of fa,b. It suffices to

assume that ψp(n) =
(−p

n

)
= −1 for all primes p|a′ and

(−1
n

)
= −1. For indeed,

these conditions imply that
(−d

n

)
= −1 for all positive integers d dividing the level

of fa,b. By considering the prime factorization of n together with multiplicativity
in the denominator of the Kronecker symbol and using the characterization of the
splitting of primes in imaginary quadratic fields in terms of the Legendre symbol,
one sees that this, in turn, implies the requisite conditions.

Assume without loss of generality that a′ = 6a. Then it suffices to find an
n ≡ 23 (mod 24) such that ψp(n) = −1 for all primes p|a. Let a = p1p2 · · · pm,
where the pi are distinct primes. Consider the following linear combination of
Dirichlet characters:

ga(n) :=

∑
d|a µ(d)ψd(n)

2m
,

where ψd(n) :=
∏

p|d ψp(n). It can be shown that

ga(n) =
{

1 if
(−p

n

)
= −1 for all p|a

0 otherwise.
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To verify that this representation of ga(n) is equivalent to the above definition, one
can induct on the number of prime divisors of a, noticing that if q is a prime not
dividing a, then ga·q(n) = (1−ψq(n))ga(n)

2 .
Therefore, the desired n will satisfy ga(n) = 1 and n ≡ 23 (mod 24). We will

use the Pólya-Vinogradov Inequality to show that for sufficiently large a,

(3.4)
∑
n<a

n≡23 (24)

∑
d|a

µ(d)ψd(n) > 0.

This implies that there exists an n meeting the above conditions with n < a. By
the proof of Lemma 3.2, the set of odd b for which fa,b is lacunary is a subset of
the roots of the polynomials Aa,b(0), . . . , Aa,b(n − 1). If n < a, these will all be
constant, so there will be no such b.

To prove (3.4), let S be the set of Dirichlet characters modulo 24. Then∑
n<a

n≡23 (24)

∑
d|a

µ(d)ψd(n) =
∑
n<a

n≡23 (24)

1 +
∑
d|a
d>1

µ(d)
∑
n<a

n≡23 (24)

ψd(n)

=
∑
n<a

n≡23 (24)

1 +
∑
d|a
d>1

µ(d)
∑
n<a

ψd(n)
∑
χ∈S

χ(−n)
8

≥ a

24
− 1 +

∑
d|a
d>1

µ(d)
1
8
ψd(−1)

∑
χ∈S

∑
n<a

ψd(−n)χ(−n).

This follows from the fact that
∑

χ∈S χ(1) = 8.
Applying (3.3) to the innermost sum above, combined with the fact that a > d

for all d|a, we have∑
n<a

n≡23 (24)

∑
d|a

µ(d)ψd(n) ≥ a

24
− 1 −

∑
d|a
d>1

2
√

24d log(24d)

≥ a

24
− 1 − 2m+1

√
24a log(24a).

If m ≥ 12, then a
24 − 1 − 2m+1

√
24a log(24a) > 0 for all a, so there are no

corresponding odd b for any a with at least 12 prime divisors. For each m < 12,
there are at most finitely many a such that inequality (3.4) does not hold. These
are the only a for which there may exist odd b where fa,b is lacunary, and each
yields at most finitely many such b. Therefore, the complete list of pairs (a, b)
where b is odd and fa,b is lacunary is finite. Verifying all possible cases by machine
computation, we find that the precise list is given in Table 1. �

4. Examples

In this section, we explain the computation utilized to verify that each of the
forms fa,b in Table 1 (recalled for reference below) is lacunary, and we give an
explicit representation as a linear combination of CM forms in certain cases.

For all cases, we use the fact that for a given choice of a and n, the coefficient
Aa,b(n) on qn is visibly a polynomial in b of degree at most �n

a 	. By computing the
value of this polynomial for b ∈ {1, . . . , �n

a 	+ 1} and using Lagrange interpolation,
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a b such that fa,b is lacunary
1 {3, 5, 7, 9, 11, 15, 27}
2 {3, 5, 7}
3 {3, 5, 9}
4 {5, 7}
5 {7, 11}
6 ∅

7 {9, 15}

we can obtain the polynomial explicitly. The set consisting of the roots of the
polynomials Aa,b(0), . . . , Aa,b(p− 1), where p is inert in all fields with discriminant
dividing 576a, contains all the possible b such that fa,b is lacunary.

Some of these values of b, however, can be immediately discarded. Recall from
the proof of Lemma 3.2 that fa,b is not a candidate for lacunarity unless Aa,b(n0) =
0, where n0 is the smallest n such that p|24n + ab − 1. In particular, it must be
the case that 24n0 ≡ 1− ab (mod p), so those roots b not satisfying this condition
need not be considered.

From among the remaining possible values of b, we can verify lacunarity by dis-
playing a representation of fa,b as a linear combination of CM forms, as is demon-
strated below.

Example (a = 2, b = 3). We express fa,b as a linear combination of Hecke eigen-
forms as follows:

f2,3 =
1
4i

(x2,3 − y2,3),

where
x2,3 = 2ifa,b + fa,b|T5 = q + 2iq5 − 3q25 + 2iq29 + q49 + . . .

and y2,3 = x2,3. Both x2,3 and y2,3 have complex multiplication by Q(
√
−1). This

can be verified by subtracting each from its twist by the quadratic character

χ(p) =

⎧⎨
⎩

1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4),

which yields a Fourier expansion that is identically zero.

Example (a = 4, b = 7). We express fa,b as a linear combination of Hecke eigen-
forms as follows:

f4,7 =
−1
56

(x4,7 + y4,7 + z4,7 + w4,7),

where

x4,7 = 2f4,7 − 4(f4,7|T5) + f4,7|T17 = q3 − 8q15 + 9q27 + 24q39 + . . . ,

z4,7 = −30f4,7 +
4
3
i
√

2(f4,7|T11) + f4,7|T17 = q3 + 4i
√

2q9 − 23q27 + . . .

and y4,7 = x4,7, w4,7 = z4,7. The forms x4,7 and y4,7 have complex multiplication
by Q(

√
−1), while z4,7 and w4,7 have complex multiplication by Q(

√
−2), as can

be checked by methods analogous to the above.
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