Betti number bounds for fewnomial hypersurfaces via stratified Morse theory
HTML articles powered by AMS MathViewer
- by Frédéric Bihan and Frank Sottile
- Proc. Amer. Math. Soc. 137 (2009), 2825-2833
- DOI: https://doi.org/10.1090/S0002-9939-09-09902-X
- Published electronically: April 23, 2009
- PDF | Request permission
Abstract:
We use stratified Morse theory for a manifold with corners to give a new bound for the sum of the Betti numbers of a fewnomial hypersurface in $\mathbb {R}^N_{>}$.References
- Riccardo Benedetti and Jean-Jacques Risler, Real algebraic and semi-algebraic sets, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990. MR 1070358
- Frédéric Bihan, J. Maurice Rojas, and Frank Sottile, On the sharpness of fewnomial bounds and the number of components of fewnomial hypersurfaces, Algorithms in algebraic geometry, IMA Vol. Math. Appl., vol. 146, Springer, New York, 2008, pp. 15–20. MR 2397935, DOI 10.1007/978-0-387-75155-9_{2}
- Frédéric Bihan and Frank Sottile, New fewnomial upper bounds from Gale dual polynomial systems, Mosc. Math. J. 7 (2007), no. 3, 387–407, 573 (English, with English and Russian summaries). MR 2343138, DOI 10.17323/1609-4514-2007-7-3-387-407
- J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- A. G. Khovanskiĭ, Fewnomials, Translations of Mathematical Monographs, vol. 88, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Smilka Zdravkovska. MR 1108621, DOI 10.1090/mmono/088
- J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280. MR 161339, DOI 10.1090/S0002-9939-1964-0161339-9
- O. A. Oleĭnik, Estimates of the Betti numbers of real algebraic hypersurfaces, Mat. Sbornik N.S. 28(70) (1951), 635–640 (Russian). MR 0044864
- Daniel Perrucci, Some bounds for the number of components of real zero sets of sparse polynomials, Discrete Comput. Geom. 34 (2005), no. 3, 475–495. MR 2160050, DOI 10.1007/s00454-005-1179-x
- J.-J. Risler, Les nombres de Betti des ensembles algébriques réels, Gaz. Math. No. 54 (1992), 57–58.
- J. Maurice Rojas, Some speed-ups and speed limits for real algebraic geometry, J. Complexity 16 (2000), no. 3, 552–571. Complexity theory, real machines, and homotopy (Oxford, 1999). MR 1787885, DOI 10.1006/jcom.2000.0553
- René Thom, Sur l’homologie des variétés algébriques réelles, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 255–265 (French). MR 0200942
Bibliographic Information
- Frédéric Bihan
- Affiliation: Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget-du-Lac Cedex, France
- Email: Frederic.Bihan@univ-savoie.fr
- Frank Sottile
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 355336
- ORCID: 0000-0003-0087-7120
- Email: sottile@math.tamu.edu
- Received by editor(s): June 19, 2008
- Published electronically: April 23, 2009
- Additional Notes: The second author was supported by NSF CAREER grant DMS-0538734 and NSF grant DMS-0701050
- Communicated by: Daniel Ruberman
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 2825-2833
- MSC (2000): Primary 14P25
- DOI: https://doi.org/10.1090/S0002-9939-09-09902-X
- MathSciNet review: 2506438