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A q-ANALOGUE OF NON-STRICT MULTIPLE ZETA VALUES
AND BASIC HYPERGEOMETRIC SERIES

YOSHIHIRO TAKEYAMA

(Communicated by Peter A. Clarkson)

Abstract. We consider the generating function for a q-analogue of non-strict
multiple zeta values (or multiple zeta-star values) and prove an explicit for-
mula for it in terms of a basic hypergeometric series 3φ2. By specializing the
variables in the generating function, we reproduce the sum formula obtained
by Ohno and Okuda and get some relations in the case of full height.

1. Introduction

In this paper we consider the generating function for a q-analogue of non-strict
multiple zeta values and prove an explicit formula for it in terms of a basic hyper-
geometric series 3φ2.

First we recall the definition of the multiple zeta value (MZV). A multi-index
k = (k1, . . . , kn) (ki ∈ Z>0) is called admissible if k1 ≥ 2. The weight, the depth and
the height of an index k = (k1, . . . , kn) are defined by wt(k) :=

∑n
i=1 ki, dep(k) := n

and ht(k) := #{i | ki ≥ 2}, respectively. For an admissible index k, the MZV is
defined by

ζ(k) :=
∑

m1>···>mn>0

1
mk1

1 · · ·mkn
n

.

The non-strict multiple zeta value ζ∗(k) is defined by

ζ∗(k) :=
∑

m1≥···≥mn≥1

1
mk1

1 · · ·mkn
n

,

which is also called a multiple zeta-star value (MZSV).
The subject of this article is the relations between MZVs or MZSVs and gener-

alized hypergeometric series, and their q-analogue. The first result of this kind was
obtained by Ohno and Zagier [9]. They considered a generating function for MZVs
and found that it is explicitly written in terms of the value at z = 1 of the hy-
pergeometric series 2F1(α, β, γ; z). Li refined Ohno-Zagier’s formula by introducing
generalized heights [6].

Aoki, Kombu and Ohno obtained an explicit formula for the generating function
of MZSVs [1]. Denote by I0(k, n, s) the set of admissible indices of weight k, depth
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n and height s. Then Aoki-Kombu-Ohno’s formula is equivalent to the following
equality:

∑
k,n,s

⎛
⎝ ∑

k∈I0(k,n,s)

ζ∗(k)

⎞
⎠xk−n−syn−szs−1(1.1)

=
1

(1 − x)(1 − y) − z
3F2

[
1, 1, 1 − x

2 − α, 2 − β
; 1

]
,

where α and β are determined by

α + β = x + y, αβ = xy − z,

and 3F2 is the generalized hypergeometric series

3F2

[
α1, α2, α3

β1, β2
; z

]
:=

Γ(β1)Γ(β2)
Γ(α1)Γ(α2)Γ(α3)

∞∑
n=0

Γ(α1 + n)Γ(α2 + n)Γ(α3 + n)
n! Γ(β1 + n)Γ(β2 + n)

zn.

The formula (1.1) is obtained from that in Remark 3.2 of [1] by using the Kummer-
Thomae-Whipple formula

3F2

[
α1, α2, α3

β1, β2
; 1

]

=
Γ(β2)Γ(β1 + β2 − α1 − α2 − α3)
Γ(β2 − α1)Γ(β1 + β2 − α2 − α3)

3F2

[
α1, β1 − α2, β1 − α3

β1, β1 + β2 − α2 − α3
; 1

]
.

A refinement of (1.1) in the same direction as Li’s result is obtained by Aoki, Ohno
and Wakabayashi [2].

Now let us consider q-analogues. For an admissible index k = (k1, . . . , kn), the
q-analogues of MZV and MZSV are defined [10, 3, 4, 7] by

ζq(k) :=
∑

m1>···>mn>0

q(k1−1)m1+···+(kn−1)mn

[m1]k1 · · · [mn]kn
,

ζ∗q (k) :=
∑

m1≥···≥mn≥1

q(k1−1)m1+···+(kn−1)mn

[m1]k1 · · · [mn]kn
,

where 0 < q < 1 and [n] is the q-integer [n] := (1 − qn)/(1 − q). In this article we
call the q-analogues ζq(k) and ζ∗q (k), qMZV and qMZSV, respectively, for short. In
[8], Okuda and the author proved a formula of Ohno-Zagier type for qMZVs. It is a
generalization of Bradley’s formula [3] for a generating function of qMZVs of type
ζq(m + 2, 1, . . . , 1). See [3] for other linear relations among qMZVs. On the other
hand, less is known about qMZSVs. Bradley studied a finite version of qMZSVs
[4]. Ohno and Okuda obtained two kinds of sum formulas for qMZSVs [7].

The main result of this paper is a q-analogue of Aoki-Kombu-Ohno’s formula
(1.1). To write our formula, we need the basic hypergeometric series r+1φr defined
by

r+1φr

[
a1, . . . , ar+1

b1, . . . , br
; t

]
:=

∞∑
n=0

(a1)n · · · (ar+1)n

(b1)n · · · (br)n(q)n
tn,

where (x)n = (x; q)n :=
∏n

j=1(1 − qj−1x).
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Theorem 1.1 (Generating function of qMZSVs).

∑
k,n,s

⎛
⎝ ∑

k∈I0(k,n,s)

ζ∗q (k)

⎞
⎠xk−n−syn−szs−1(1.2)

=
q

(1 − qx)(1 − y) − qz
3φ2

[
q, q, (1 + (1 − q)x)q

q2/a, q2/b
;

q

1 − (1 − q)y

]
,

where a and b are determined by

a + b =
2 + (1 − q)(x − y) + (1 − q)2(z − xy)

1 + (1 − q)x
, ab =

1 − (1 − q)y
1 + (1 − q)x

.

The rest of the paper is organized as follows. We prove Theorem 1.1 in Section 2.
In Section 3 we consider two specializations of the variables x, y and z in (1.2). First
we set z = xy to reproduce Ohno-Okuda’s sum formula for qMZSVs. The second
specialization is y = 0, which gives a formula for qMZSVs with full height; that is,
ht(k) = dep(k). This is a q-analogue of Theorem 4.2 in [1].

2. Proof of Theorem 1.1

The proof is quite similar to that of Theorem 1 in [8]. We make use of the
q-analogue of the multiple polylogarithms with equality:

Li∗k(t) :=
∑

m1≥···≥mn≥1

tm1

[m1]k1 · · · [mn]kn
.

The right hand side converges if |t| < 1 for any index k = (k1, . . . , kn) (ki ∈ Z>0).
For an admissible index k, the value Li∗k(q) is related to qMZSVs as follows:

Li∗k(q) =
k1∑

a1=2

k2∑
a2=1

· · ·
kn∑

an=1

(
k1 − 2
a1 − 2

) ⎧⎨
⎩

n∏
j=2

(
kj − 1
aj − 1

)⎫⎬
⎭(2.1)

× (1 − q)
∑n

j=1(kj−aj)ζ∗q (a1, . . . , an).

Denote by I(k, n, s) the set of indices of weight k, depth n and height s, and by
I0(k, n, s) the subset consisting of admissible indices. Set

G(k, n, s; t) :=
∑

k∈I(k,n,s)

Li∗k(t), G0(k, n, s; t) :=
∑

k∈I0(k,n,s)

Li∗k(t).

By definition we set G(0, 0, 0; t) = 1 and G(k, n, s; t) = 0 unless k ≥ n + s and
n ≥ s ≥ 0. Now introduce the two generating functions

Φ(t) :=
∑

k,n,s≥0

G(k, n, s; t) uk−n−svn−sws,

Φ0(t) :=
∑

k,n,s≥0

G0(k, n, s; t)uk−n−svn−sws−1.

From (2.1) we see that

Φ0(q) =
1

1 − (1 − q)u

∑
k,n,s

⎛
⎝ ∑

k∈I0(k,n,s)

ζ∗q (k)

⎞
⎠xk−n−syn−szs−1,(2.2)
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where x, y, z are determined by

x =
u

1 − (1 − q)u
, y =

v + (1 − q)(w − uv)
1 − (1 − q)u

, z =
w

(1 − (1 − q)u)2
.

The q-difference operator Dq is defined by

(Dqf)(t) :=
f(t) − f(qt)

(1 − q)t
.

From the recurrence relations

DqLi∗k(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
t
Li∗k1−1,k2,...,kn

(t) (k1 > 1),
1

t(1 − t)
Li∗k2,...,kn

(t) (k1 = 1, n > 1),

1
1 − t

(k = (1))

we obtain the following difference equations by the same calculation as in [1]:

DqΦ0 =
1
vt

(Φ − 1 − wΦ0) +
u

t
Φ0,

Dq (Φ − Φ0) =
v

t(1 − t)
(Φ − 1) +

v

1 − t
.

Eliminate Φ from the two equations. By using the formula Dq(tf(t)) = qt ·Dqf(t)+
f(t), we find

qt2(1 − t)D2
qΦ0 + t((1 − u)(1 − t) − v)DqΦ0 + (uv − w)Φ0 = t.(2.3)

Let us solve (2.3). Assume that |u|, |v| and |w| are small enough. Then Φ0(t) is
regular at t = 0 and satisfies Φ0(0) = 0. Set Φ0(t) =

∑∞
n=1 cntn and substitute it

into (2.3). We see that

c1 =
1

(1 − u)(1 − v) − w
,

cn+1 =
[n](1 − u + q[n − 1])

q[n + 1][n] + (1 − u − v)[n + 1] + uv − w
cn (n = 1, 2, . . .).(2.4)

Now introduce the two variables a and b determined by

a + b = 2 − (1 − q)(u + v), ab = 1 − (1 − q)(u + v) + (1 − q)2(uv − w).

Then the coefficient in (2.4) is factored as

cn+1 =
(1 − qn)(1 − qn

1−(1−q)u )

(1 − qn+1/a)(1 − qn+1/b)
· 1 − (1 − q)u

ab
cn.

Thus we obtain

Φ0(t) =
t

(1 − u)(1 − v) − w
3φ2

[
q, q, q

1−(1−q)u

q2/a, q2/b
;
1 − (1 − q)u

ab
t

]
.

Set t = q and compare it with (2.2). Expressing u, v and w in terms of x, y and z,
we finally get (1.2). This completes the proof of Theorem 1.1.
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3. Specialization of parameters

Let us consider two specializations of (1.2) at (i) z = xy and (ii) y = 0. Before
proceeding we rewrite the right hand side of (1.2) by using the q-analogue of the
Kummer-Thomae-Whipple formula (see [5], Eq. (3.2.7)):

3φ2

[
a1, a2, a3

b1, b2
;

b1b2

a1a2a3

]
=

(b2/a1)∞(b1b2/a2a3)∞
(b2)∞(b1b2/a1a2a3)∞

3φ2

[
a1, b1/a2, b1/a3

b1, b1b2/a2a3
;
b2

a1

]
.

We can apply this equality to 3φ2 in (1.2) because 1− (1− q)y = ab(1 + (1− q)x).
Then we see that

3φ2

[
q, q, (1 + (1 − q)x)q

q2/a, q2/b
;

q

1 − (1 − q)y

]

=
(q/b)∞
(q2/b)∞

( q2

1−(1−q)y )∞
( q
1−(1−q)y )∞

3φ2

[
q, q/a, q

a(1−(1−q)x)

q2/a, q2

1−(1−q)y

; q/b

]

=
(
1 − q

a

) (
1 − q

b

) ∞∑
n=0

(
q

a(1 + (1 − q)x)

)
n(

q

1 − (1 − q)y

)
n+1

(q

b

)n

1 − qn+1

a

.

In the following we specialize the variables x, y and z in the equality obtained by
rewriting the right hand side of (1.2) as above.

3.1. The case of z = xy. We can take a = 1−(1−q)y
1+(1−q)x and b = 1. Then we reproduce

the following formula obtained by Ohno and Okuda [7]:

∑
k,n

⎛
⎝ ∑

k∈I0(k,n)

ζ∗q (k)

⎞
⎠xk−n−1yn−1 =

∞∑
n=1

qn(1 − (1 − q)y)
([n] − y)([n] − (qnx + y))

,

where I0(k, n) is the set of admissible indices of weight k and depth n. It implies
the sum formula for qMZSVs:

∑
k∈I0(k,n)

ζ∗q (k) =
1

k − 1

(
k − 1
n − 1

) n−1∑
l=0

(
n − 1

l

)
(k − 1 − l)(1 − q)lζq(k − l).

3.2. The case of y = 0. The right hand side of (1.2) becomes

−1
z

(
1 − 2φ1

[
1/a, b
q/a

; q/b

])
.

Now using Heine’s summation formula

2φ1

[
a1, a2

b1
;

b1

a1a2

]
=

(b1/a1)∞(b1/a2)∞
(b1)∞(b1/a1a2)∞

,

we obtain

2φ1

[
1/a, b
q/a

; q/b

]
=

(q)∞(q/ab)∞
(q/a)∞(q/b)∞

=
∞∏

n=1

1 − qn

[n]x(
1 − qn

[n]s
)(

1 − qn

[n] t
) ,

where s and t are determined by

s + t = x + (1 − q)z, st = −z.(3.1)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3002 YOSHIHIRO TAKEYAMA

From the expansion

log
∞∏

n=1

(
1 − qn

[n]
x

)
=

1
q − 1

log (1 + x(1 − q))
∞∑

n=1

qn

[n]

−
∞∑

n=2

ζq(n)
∞∑

m=0

(q − 1)m

m + n
xm+n,

we get the following formula.

Theorem 3.1 (Generating function of qMZSVs with full height).

∑
k,n

⎛
⎝ ∑

k∈I0(k,n,n)

ζ∗q (k)

⎞
⎠xk−n−szn−1

= −1
z

{
1 − exp

( ∞∑
n=2

ζq(n)
∞∑

m=0

(q − 1)m

m + n
(sm+n + tm+n − xm+n)

)}
,

where s and t are determined by (3.1).
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