HAVING CUT-POINTS IS NOT
A WHITNEY REVERSIBLE PROPERTY

EIICHI MATSUHASHI

(Communicated by Alexander N. Dranishnikov)

Abstract. We show that the property of having cut-points is not a Whitney reversible property. This answers in the negative a question posed by Illanes and Nadler.

1. Introduction

In this note, all spaces are separable metrizable spaces and maps are continuous. We denote the interval [0, 1] by I. A compact metric space is called a compactum, and continuum means a connected compactum. If X is a continuum, C(X) denotes the space of all subcontinua of X with the topology generated by the Hausdorff metric.

A topological property \(P \) is called a Whitney property provided that if a continuum \(X \) has property \(P \), so does \(\mu^{-1}(t) \) for each Whitney map (see p. 105 of [2]) \(\mu \) for \(C(X) \) and for each \(t \in [0, \mu(X)) \). A topological property \(P' \) is called a Whitney reversible property provided that whenever \(X \) is a continuum such that \(\mu^{-1}(t) \) has property \(P' \) for all Whitney maps \(\mu \) for \(C(X) \) and all \(t \in (0, \mu(X)) \), then \(X \) has property \(P' \). These properties have been studied by many authors (see [2]).

A point \(p \) in a continuum \(X \) is called a cut-point of \(X \) provided that \(X \setminus \{p\} \) is disconnected. In this paper we prove that the property of having cut-points is not a Whitney reversible property (it is known that the property of having cut-points is not a Whitney property; see Exercise 43.4 of [2]). This answers in the negative question 43.3 of [2] posed by Illanes and Nadler.

2. Main theorem

A map \(f : X \to Y \) between continua is called an atomic map if \(f^{-1}(f(A)) = A \) for each \(A \in C(X) \) such that \(f(A) \) is nondegenerate.

A subcontinuum \(T \) of a continuum \(X \) is terminal if every subcontinuum of \(X \) which intersects both \(T \) and its complement must contain \(T \). It is known that a map \(f \) of a continuum \(X \) onto a continuum \(Y \) is atomic if and only if every fiber of \(f \) is a terminal subcontinuum of \(X \).

The main aim of this paper is to prove Theorem 2.2. To prove this theorem, we need the next result, proved by Anderson [1].

Received by the editors December 23, 2008, and, in revised form, January 6, 2009.
2000 Mathematics Subject Classification. Primary 54B20; Secondary 54F15.
Key words and phrases. Whitney reversible property, cut-point, terminal continuum, atomic map.

©2009 American Mathematical Society
Reverts to public domain 28 years from publication

3543
Lemma 2.1 (see Theorem of [4]). For each continuum Y, there exist a continuum X and a monotone open map \(f : X \to Y \) such that \(f^{-1}(y) \) is a nondegenerate terminal subcontinuum of X for each \(y \in Y \).

Theorem 2.2. There exists a continuum \(Z \) such that:

(A) \(Z \) does not have a cut-point, and

(B) \(\mu^{-1}(s) \) has a cut-point for each Whitney map \(\mu : C(Z) \to [0, \mu(Z)] \) and for each \(s \in (0, \mu(Z)) \).

Proof. By Lemma 2.1, there exist a continuum X and a monotone open map \(f : X \to I \) such that \(f^{-1}(y) \) is a nondegenerate terminal subcontinuum of X for each \(y \in I \). Let Z be the quotient space obtained from X by shrinking \(f^{-1}(1) \) to the point. Let \(p : X \to Z \) be the natural projection and \(q = f \circ p^{-1} : Z \to I \). Note that q is a monotone open map such that \(q^{-1}(1) \) is a one-point set and \(q^{-1}(y) \) is a nondegenerate terminal subcontinuum of Z for each \(y \in [0, 1) \) (hence q is atomic).

We show that Z has the required properties. At first we prove that Z does not have a cut-point. Let \(z \in Z \). If \(\{z\} = q^{-1}(1) \), then \(Z \setminus \{z\} = q^{-1}([0, 1)) \). Since q is monotone, \(q^{-1}((0, 1]) \) is connected. Hence in this case \(z \) is not a cut-point of Z. Assume that \(z \in q^{-1}(t) \) for some \(t \in [0, 1) \) and that \(z \) is a cut-point of Z. Then there exist nonempty open subsets \(O, H \subset Z \) such that \(Z \setminus \{z\} = O \cup H \) and \(O \cap H = \emptyset \). Then \(O \cup \{z\} \) and \(H \cup \{z\} \) are nondegenerate continua (see Proposition 6.3 of [3]). We may assume that \(q^{-1}(t) \cap H \neq \emptyset \). Since \(O \cup \{z\} \) is a nondegenerate continuum, there exists \(\{z_i\}_{i=1}^{\infty} \subset O \) such that \(\lim_{1 \to \infty} z_i = z \). For each \(i = 1, 2, ..., \) let \(t_i = q(z_i) \). Note that \(q^{-1}(t_i) \subset O \) for each \(i = 1, 2, ... \). Since q is an open map, \(\lim_{1 \to \infty} q^{-1}(t_i) = q^{-1}(t) \). Then \(q^{-1}(t) \subset O \cup \{z\} \). This is a contradiction because \(q^{-1}(t) \cap H \neq \emptyset \). So Z does not have a cut-point.

Next we prove that \(\mu^{-1}(s) \) has a cut-point for each Whitney map \(\mu : C(Z) \to [0, \mu(Z)] \) and for each \(s \in (0, \mu(Z)) \). Take \(a, b \in (0, 1) \) such that \(\mu(q^{-1}([a, b])) = s \) (this is possible because q is a monotone open map and \(q^{-1}(1) \) is a one-point set). Now we show that

1. \(\mu^{-1}(s) = \{ C \in \mu^{-1}(s) \mid C \subset q^{-1}([0, b]) \} \cup \{ C \in \mu^{-1}(s) \mid C \subset q^{-1}([a, 1]) \} \).

If not, there exists \(D \in \mu^{-1}(s) \) such that \(D \cap q^{-1}([0, a]) \neq \emptyset \neq D \cap q^{-1}([b, 1]) \). Then \(q(D) \) contains \([a, b] \) as a proper subcontinuum of \(q(D) \). Since q is atomic, \(D = q^{-1}(q(D)) \). So \(D \) contains \(q^{-1}([a, b]) \) as a proper subcontinuum of \(D \). This is a contradiction because \(D, q^{-1}([a, b]) \subset \mu^{-1}(s) \). Hence (1) holds.

It is easy to see that

2. \(\{ C \in \mu^{-1}(s) \mid C \subset q^{-1}([0, b]) \} \cap \{ C \in \mu^{-1}(s) \mid C \subset q^{-1}([a, 1]) \} = \{ q^{-1}([a, b]) \} \)

and

3. \(\{ C \in \mu^{-1}(s) \mid C \subset q^{-1}([0, b]) \} \) and \(\{ C \in \mu^{-1}(s) \mid C \subset q^{-1}([a, 1]) \} \)

are nondegenerate subcontinua of \(\mu^{-1}(s) \).

By (1), (2) and (3) we see that \(q^{-1}([a, b]) \) is a cut-point of \(\mu^{-1}(s) \).

By this result, we see that the property of having cut-points is not a Whitney reversible property.
HAVING CUT-POINTS IS NOT A WHITNEY REVERSIBLE PROPERTY

References

Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
E-mail address: mateii@ynu.ac.jp