CONSTRUCTING CONVEX PLANES IN THE PANTS COMPLEX

JAVIER ARAMAYONA, HUGO PARLIER, AND KENNETH J. SHACKLETON

(Communicated by Alexander N. Dranishnikov)

Abstract. Our main theorem identifies a class of totally geodesic subgraphs of the 1-skeleton of the pants complex, referred to as the pants graph, each isomorphic to the product of two Farey graphs. We deduce the existence of many convex planes in the pants graph of any surface of complexity at least 3.

1. Introduction

Let Σ be a compact, connected and orientable surface, possibly with non-empty boundary, of genus $g(\Sigma)$ and $|\partial \Sigma|$ boundary components. After Hatcher-Thurston [7], to the surface Σ one may associate a simplicial graph $\mathcal{P}(\Sigma)$, the pants graph, whose vertices are all the pants decompositions of Σ and any two vertices are connected by an edge if and only if they differ by an elementary move; see Section 2.2 for an expanded definition. In other words, the pants graph is precisely the 1-skeleton of the 2-dimensional cell complex commonly referred to in the literature as the pants complex. The pants graph is connected [7], and one may introduce the canonical path-metric d on \mathcal{P} by first assigning length 1 to each edge and then regarding the result as a geodesic metric space.

The pants graph, with its own geometry, is a fundamental object to study. Brock [3] revealed deep connections with hyperbolic 3-manifolds and proved the pants graph is the correct combinatorial model for the Weil-Petersson metric on Teichmüller space, for the two are quasi-isometric. The isometry group of (\mathcal{P}, d) is also correct in so far as the study of surface groups is concerned, for Margalit [8] proved it is almost always isomorphic to the mapping class group of Σ. In addition, Masur-Schleimer [11] proved the pants graph of any closed surface of genus at least 3 to be one-ended. With only finitely many exceptions, the pants graph is not hyperbolic in the sense of Gromov [4] or even strongly relatively hyperbolic [2, 5] in any of the standard senses. A lack of negative curvature on a large-scale in even a relative sense is often an impediment to studying both the synthetic and coarse geometry of a metric space.

In [1], the authors prove that every subgraph of \mathcal{P} isomorphic to the Farey graph is in fact totally geodesic in (\mathcal{P}, d). The purpose of this paper is to study the extrinsic geometry of another class of subgraphs of the pants graph, each determined...
by 2-handle multicurves as defined at the end of Section 2.1 and as such isomorphic to the product of two Farey graphs. This is a special case of Conjecture 5 from [1].

Theorem 1. Let Σ be a compact, connected and orientable surface, and denote by Q any 2-handle multicurve on Σ. Then, P_Q is totally geodesic in $P(\Sigma)$.

The Weil-Petersson metric on Teichmüller space is not complete, since the length of a simple closed geodesic can converge to zero on bounded subsets of Teichmüller space [13] [8]. Indeed, Masur [9] showed that the completion of the Weil-Petersson metric is homeomorphic to the augmented Teichmüller space, obtained by suitably extending every Fenchel-Nielsen co-ordinate system to admit zero lengths. The completion thus carries the structure of a stratified space, where by definition each stratum assigns zero length to its corresponding multicurve. These strata are all convex [12]; in particular those strata corresponding to 2-handle multicurves are all convex. For any given 2-handle multicurve Q, the quasi-isometry offered in Theorem 1.1 of Brock [3] may be chosen so as to map the stratum corresponding to Q onto the subgraph P_Q of the pants graph. It follows that such subgraphs are uniformly quasi-isometrically embedded in the pants graph. This fact is also implicit in the earlier work of Masur-Minsky [10].

Theorem 1 thus offers a complete analogy between the geometry of the 2-handle subgraphs in the pants graph and the geometry of the corresponding strata lying in the completed Weil-Petersson space. In order to prove Theorem 1 we shall project paths in the pants graph to paths in the given 2-handle subgraph of no greater length. All the notation of Theorem 2 will be explained in Section 2, but for now we point out the finite set of pants decompositions $\pi_Q(\nu)$ is reminiscent of the subsurface projection after Masur-Minsky [10] of a pants decomposition ν to the subgraph P_Q determined by the 2-handle multicurve Q. The intrinsic metric on the graph P_Q, assigning length 1 to each edge, is denoted by d_Q.

Theorem 2. Let Σ be a compact, connected and orientable surface and denote by Q any 2-handle multicurve on Σ. Let (ν_0, \ldots, ν_n) be a path in the pants graph $P(\Sigma)$. For each index $i \leq n - 2$ and for each $\omega_i \in \pi_Q(\nu_i)$, there exists an integer $j \in \{1, 2\}$ and a pants decomposition $\omega_i + j \in \pi_Q(\nu_i + j)$ of Σ such that $d_Q(\omega_i, \omega_i + j) \leq j$.

To the authors’ knowledge, it has yet to be decided whether there exists a distance non-increasing projection from the whole pants graph to any one of its subgraphs corresponding to a 2-handle multicurve. In the absence of an affirmative result, Theorem 2 may well hold independent interest.

Let us indicate a few consequences of Theorem 1. First, by considering a pair of bi-infinite geodesic paths, one in either factor Farey graph for a 2-handle multicurve, we deduce the following. By a plane we shall mean a graph isomorphic to the Cayley graph of the group $\mathbb{Z} \oplus \mathbb{Z}$ with standard generating set.

Corollary 3. Let Σ be a compact, connected and orientable surface of complexity at least 3. Then, $\mathcal{P}(\Sigma)$ contains infinitely many convex planes, each contained in a 2-handle subgraph.

These planes are not all totally geodesic, since there exist bi-infinite geodesic paths in a Farey graph which are not totally geodesic. As we note in Lemma 9 towards the end of Section 5, in the pants graph of the 6-holed sphere, the 3-holed torus, and the closed surface of genus 2 there are no other convex planes: the
vertices of any given convex plane all contain a common separating curve whose complement in \(\Sigma \) is the union of two surfaces neither of which is a 3-holed sphere.

The plan of this paper is as follows. In Section 2 we recall all the terminology we need, much of which is already standard. In Section 3 we give an elementary proof to Theorem 2. In Section 4 we apply Theorem 2 to give an elementary proof to Theorem 1. In Section 5 we prove Corollary 3 and classify the convex planes in the pants graph of any one of the complexity 3 surfaces.

2. Background and definitions

We supply all the background and terminology needed both to understand the statements of our main results, and to make sense of their proofs. Throughout, we define a loop on \(\Sigma \) as the homeomorphic image of a standard circle.

2.1. Curves and multicurves. A loop on \(\Sigma \) is said to be trivial if it bounds a disc and peripheral if it bounds an annulus whose other boundary component belongs to \(\partial \Sigma \). For a non-trivial and non-peripheral loop \(c \), we shall denote by \([c]\) its free homotopy class. A curve is by definition the free homotopy class of a non-trivial and non-peripheral loop. Given any two curves \(\alpha \) and \(\beta \), their intersection number \(\iota(\alpha, \beta) \) is defined equal to \(\min\{|a \cap b| : a \in \alpha, b \in \beta\} \).

We shall say two curves are disjoint if they have zero intersection number, and otherwise say they intersect essentially. A pair of curves \(\{\alpha, \beta\} \) is said to fill the surface \(\Sigma \) if \(\iota(\delta, \alpha) + \iota(\delta, \beta) > 0 \) for every curve \(\delta \). In other words, every curve on \(\Sigma \) intersects at least one of \(\alpha \) and \(\beta \) essentially.

A multicurve is a (possibly empty) collection of distinct and disjoint curves, and the intersection number for a pair of multicurves is to be defined additively. While in the literature the definition of a multicurve does at times permit parallel copies of any given curve, this is not the case here. We denote by \(\kappa(\Sigma) \) the cardinality of any maximal multicurve on \(\Sigma \), equal to \(3g(\Sigma) + |\partial \Sigma| - 3 \), and refer to this as the complexity of \(\Sigma \). Note, only two surfaces are of complexity 1, namely the 4-holed sphere and the 1-holed torus.

Given a set of disjoint loops \(L \), such as the boundary of some subsurface of \(\Sigma \), we denote by \([L] \) the multicurve maximal among all multicurves whose every curve is represented by some element of \(L \). We reserve ourselves the freedom to at times regard a curve or a multicurve as a class, or a set of classes, or as the disjoint union of simple closed loops realised on \(\Sigma \) in general position as need dictates and without making further comment.

We shall say a multicurve \(\omega \) has rank \(k \), for some non-negative integer \(k \), if \(|\omega| = \kappa(\Sigma) - k \). We shall say a rank 2 multicurve \(Q \) is a 2-handle multicurve if the complement of every simple representative of \(Q \) contains two complexity 1 components, each with every boundary component trivial in the relative integral homology group \(H_1(\Sigma, \partial \Sigma) \).

2.2. Pants decompositions. A pants decomposition of a surface is a maximal collection of distinct and disjoint curves, in other words a maximal multicurve. Two pants decompositions \(\mu \) and \(\nu \) are said to be related by an elementary move if \(\mu \cap \nu \) is a rank 1 multicurve and the remaining two curves together either fill a 4-holed sphere and intersect twice or fill a 1-holed torus and intersect once; consider Figure 1.
2.3. **Arcs.** An arc on Σ is the homotopy class, modulo $\partial\Sigma$, of an embedded interval ending on $\partial\Sigma$ that does not bound a disc with $\partial\Sigma$. There are broadly two types of arc: those that end on only one component of $\partial\Sigma$, referred to as *waves*, and those that end on two different components of $\partial\Sigma$, referred to as *seams*. Owing to features particular to 2-handle multicurves we need only consider waves.

We may similarly speak of two arcs, or an arc and a curve, intersecting or being disjoint.

2.4. **Graphs and paths.** For us, a path in a graph shall be a finite sequence of vertices such that any consecutive pair spans an edge; one can recover a topological path by joining up the dots. A geodesic is then a path realising distance. A subgraph F of a graph G is said to be totally geodesic if every geodesic in G whose two endpoints belong to F is entirely contained in F. A subgraph F of a graph G is said to be convex if any two vertices of F are connected by a geodesic entirely contained in F. Any totally geodesic subgraph is convex, though a convex subgraph need not be totally geodesic. Finally, the product of two graphs G and H, denoted $G * H$, is the graph with vertex set $V(G) \times V(H)$ and two distinct vertices (x_1, x_2) and (y_1, y_2) are connected by an edge if and only if either x_1 and y_1 span an edge in G and $x_2 = y_2$, or x_2 and y_2 span an edge in H and $x_1 = y_1$. The double of the graph G is defined to be the graph $G * G$.

2.5. **Subsurface projections.** A subsurface Y of Σ is said to be essential if no component of Y is parallel to a component of $\partial\Sigma$ and each component of ∂Y either determines a curve or is parallel to a component of $\partial\Sigma$. If every loop representing a curve α has non-empty intersection with an essential subsurface Y we say α and Y intersect; otherwise we say they are disjoint. We may similarly speak of a multicurve intersecting or being disjoint from Y.

Let Y denote any complexity 1 essential subsurface of Σ. For α any curve intersecting Y denote by b a component of the intersection $\alpha \cap Y$. Regardless of whether b is an arc or a curve, there exists only one curve on Y disjoint from b and such a curve shall be referred to as a projection of α. The intersection b need not
disjoint waves projects to a pair of curves either equal or intersecting minimally.

Let Q be a 2-handle multicurve and denote by Y_1 and Y_2 the two non-isotopic essential complexity 1 subsurfaces of Σ disjoint from Q. For any multicurve ν on Σ intersecting both Y_1 and Y_2 we define $\pi_Q(\nu)$ to be equal to the finite set of pants decompositions $\{\{\delta_1, \delta_2\} \cup Q : \delta_1 \in \pi_{Y_1}(\nu), \delta_2 \in \pi_{Y_2}(\nu)\}$. For any multicurve ν on Σ intersecting only Y_1, we define $\pi_Q(\nu)$ to be equal to the finite set of multicurves $\{\{\delta_1\} \cup Q : \delta_1 \in \pi_{Y_1}(\nu)\}$. For any multicurve ν on Σ disjoint from both Y_1 and Y_2 we define $\pi_Q(\nu)$ equal to $\{Q\}$.

We note that if ν is a multicurve intersecting both Y_1 and Y_2, as every pants decomposition of Σ must, then each element of $\pi_Q(\nu)$ is a pants decomposition containing Q and, as such, a vertex of \mathcal{P}_Q. Conversely, if $\pi_Q(\nu)$ contains at least one pants decomposition, then ν intersects both Y_1 and Y_2 and every element of $\pi_Q(\nu)$ is a pants decomposition. In other words, for the most part the reader may safely restrict π_Q to a map from the set of all multicurves intersecting both Y_1 and Y_2 to the power set of the set of all pants decompositions of Σ. This map further restricts to an injection on the subgraph \mathcal{P}_Q.

Remark. If $\delta \subset Y_1$ is a curve and ν is a pants decomposition disjoint from δ, then δ is contained in ν and thus in the unique pants decomposition belonging to $\pi_Q(\nu)$. In particular, if $\nu \in \mathcal{P}_Q$ and $\nu' \notin \mathcal{P}_Q$ are adjacent, then $\pi_Q(\nu') = \nu$. This “orthogonality” property of projections will be crucial to the proof of Theorem 1 offered in Section 4.

3. Proof of Theorem 2

We proceed by constructing inductively a projection for the given path to \mathcal{P}_Q, starting from the initial pants decomposition ν_0. As the projection sets of each ν_i typically comprise more than one pants decomposition, at times pairwise distance 2 apart, this will involve making a careful choice of image at each step while ensuring that the path constructed in \mathcal{P}_Q is of no greater length than the original path.

The three statements given below together adequately describe the ways in which the projection sets of two or three consecutive pants decompositions can align themselves relative to one another.

Lemma 4. Let Q be a rank 1 multicurve on Σ, and denote by Y the essential complexity 1 subsurface of Σ disjoint from Q. For two disjoint waves or curves α_1 and α_2 on Y, denote by α_1 and α_2 the unique curves on Y such that $\iota(\alpha_1, a_1) = 0$ and such that $\iota(\alpha_2, a_2) = 0$. Then, $d(\{\alpha_1\} \cup Q, \{\alpha_2\} \cup Q) \leq 1$.

Proof. If at least one of α_1 and α_2 is a curve, then α_1 and α_2 are equal and $d(\{\alpha_1\} \cup Q, \{\alpha_2\} \cup Q) = 0$. Otherwise, α_1 and α_2 are either equal or intersect minimally, and as such $d(\{\alpha_1\} \cup Q, \{\alpha_2\} \cup Q) \leq 1$.

In what follows we make repeated use of the above observation that a pair of disjoint waves projects to a pair of curves either equal or intersecting minimally.
Lemma 5. Let Q be a 2-handle multicurve on Σ, and denote by Y_1 and Y_2 the two non-isotopic complexity 1 subsurfaces of Σ disjoint from Q. Let ν_0 and ν_1 be two vertices of $\mathcal{P}(\Sigma)$ such that $d(\nu_0, \nu_1) = 1$. For $\omega_0 \in \pi_Q(\nu_0)$, if there exists $\omega_1 \in \pi_Q(\nu_1)$ such that $\omega_0 \cap \omega_1$ properly contains Q, then there exists $\omega'_1 \in \pi_Q(\nu_1)$ such that $d(\omega_0, \omega'_1) \leq 1$.

Proof. Let $\omega_0 \in \pi_Q(\nu_0)$, and suppose there exists $\omega_1 \in \pi_Q(\nu_1)$ such that $\omega_0 \cap \omega_1$ properly contains Q. If $d(\omega_0, \omega_1) \geq 2$, then there exists a curve in ν_0 intersecting both Y_1 and Y_2 and projecting to ω_0. The rank 1 multicurve $\nu_0 \cap \nu_1$ therefore intersects both Y_1 and Y_2, and so there exists a pants decomposition $\omega'_1 \in \pi_Q(\nu_0 \cap \nu_1)$. As such, $\omega'_1 \in \pi_Q(\nu_0)$ and so $d(\omega_0, \omega'_1) \leq 1$. If on the other hand $d(\omega_0, \omega_1) \leq 1$, then we may define ω'_1 to be equal to ω_1. □

Lemma 6. Let Q be a 2-handle multicurve on Σ, and denote by Y_1 and Y_2 the two non-isotopic essential complexity 1 subsurfaces of Σ disjoint from Q. Let (ν_0, ν_1, ν_2) be any geodesic in $\mathcal{P}(\Sigma)$ of length 2, and let $\omega_0 \in \pi_Q(\nu_0)$. If $\omega_0 \cap \omega_1$ is equal to Q for each $\omega_1 \in \pi_Q(\nu_1)$, then the multicurve $\nu_0 \cap \nu_1 \cap \nu_2$ intersects both Y_1 and Y_2.

Proof. As $\omega_0 \cap \omega_1$ is equal to Q for each $\omega_1 \in \pi_Q(\nu_1)$, there exists a unique curve $\delta \in \nu_0$ intersecting both Y_1 and Y_2 such that $\omega_0 \in \pi_Q(\delta)$. (See Figure 2) There also exists a curve δ' disjoint from Y_1 but intersecting Y_2 such that any multicurve disjoint from both ∂Y_1 and δ is also disjoint from δ', and such that $\omega_0 \cap \omega_1$ properly contains Q for some (rank 1 multicurve) $\omega \in \pi_Q(\delta')$. Indeed, one may explicitly construct such a curve by suitably projecting δ to the complement of Y_1 on Σ.

![Figure 2](image-url)

Figure 2. The curve δ projects to ω_0 and δ'.

Let R denote the multicurve $\nu_0 \cap \nu_1 \cap \nu_2$, noting $|R| \geq \kappa(\Sigma) - 2$, and suppose for contradiction that R does not intersect Y_1. We now note that δ' is then distinct and disjoint from every curve in R, for respectively the multicurve $\omega_0 \cap \omega_1$ is only equal to Q for each $\omega_1 \in \pi_Q(\nu_1)$, and hence for each $\omega_1 \in \pi_Q(R)$, and R is disjoint from both ∂Y_1 and δ. It follows that $R \cup \{\delta'\}$ is a multicurve disjoint from Y_1 and, since it cannot contain ∂Y_1, as such has cardinality at most $\kappa(\Sigma) - 2$. Thus,

$$|R| = |(R \cup \{\delta'\}) - \{\delta'\}| = |R \cup \{\delta'\}| - |\{\delta'\}| \leq \kappa(\Sigma) - 2 - 1 = \kappa(\Sigma) - 3.$$

To be more succinct, $|R| \leq \kappa(\Sigma) - 3$. We therefore have two incompatible estimates for the cardinality of R, and this is a contradiction.
A parallel argument applies to Y_2, and the statement of the lemma therefore holds.

We denote by Y_1 and Y_2 the two essential non-isotopic complexity 1 subsurfaces of Σ disjoint from Q. Let ω_0 denote any element of $\pi_Q(\nu_0)$.

Suppose inductively we have chosen the vertex $\omega_k \in \pi_Q(\nu_k)$, for some $k \geq 0$. If there exists a pants decomposition $\omega \in \pi_Q(\nu_{k+1})$ such that $\omega \cap \omega_0$ is not equal to Q, then by Lemma 3 there exists a pants decomposition $\omega' \in \pi_Q(\nu_{k+1})$ such that $d(\omega, \omega') \leq 1$. We define ω_{k+1} to be equal to ω'.

We now consider the sole remaining case, that $\omega \cap \omega_0$ is equal to Q for every pants decomposition $\omega \in \pi_Q(\nu_{k+1})$. By Lemma 4 the multicurve $\nu_k \cap \nu_{k+1} \cap \nu_{k+2}$, denoted R, intersects both Y_1 and Y_2. Taking one intersection of R with Y_1 and then with Y_2, we may construct pants decompositions ω_{k+1} and ω_{k+2} of \mathcal{P}_Q, such that $\omega_k \cap \omega_{k+1}$ and $\omega_{k+1} \cap \omega_{k+2}$ are both rank 1 multicurves, and where $\omega_{k+2} \in \pi_Q(R) \subseteq \pi_Q(\nu_{k+2})$. Note though, ω_{k+1} need not be contained in $\pi_Q(\nu_{k+1})$.

As each intersection of ω with Y_1 and with Y_2 is either a wave or a curve, by Lemma 3 we have in turn $d(\omega_k, \omega_{k+1}) \leq 1$ and $d(\omega_{k+1}, \omega_{k+2}) \leq 1$. Thus $d(\omega_k, \omega_{k+2}) \leq d(\omega_k, \omega_{k+1}) + d(\omega_{k+1}, \omega_{k+2}) \leq 1 + 1 = 2$, and the induction continues from $k + 2$.

This concludes the proof of Theorem 2. \qed

We do not rule out the possibility that the techniques presented above can be adapted to treat all rank 2 multicurves, or to treat “many-handle” multicurves. That said, the number of cases to be considered, arising from the possibility of seams and the number of subsurfaces to project to, is likely to be prohibitive. These more general statements have already been conjectured, being special cases of Conjecture 5 from [1].

4. Proof of Theorem 4

Suppose, for contradiction, that \mathcal{P}_Q is not totally geodesic for some 2-handle multicurve Q. Then, there exists a geodesic (ν_0, \ldots, ν_n) in $\mathcal{P}(\Sigma)$ such that $\{\nu_0, \nu_n\} \subset \mathcal{P}_Q$ but $\nu_j \notin \mathcal{P}_Q$ for each $j \in \{1, 2, \ldots, n-1\}$. Applying Theorem 2 inductively, we find an increasing sequence of integers $\{k_1, k_2, \ldots, k_m\} \subseteq \{1, 2, \ldots, n\}$, containing 1 and at least one of $n-1$ and n, and a corresponding sequence of pants decompositions $\omega_{k_j} \in \pi_Q(\nu_{k_j})$ such that $0 < k_{j+1} - k_j \leq 2$, for each j, and such that $d_Q(\omega_{k_j}, \omega_{k_{j+1}}) \leq k_{j+1} - k_j$, for each j. Necessarily, $\omega_{k_1} = \nu_0$ and $\omega_{k_m} = \nu_n$.

By the closing remark of Section 2.5. We note that
\[
d_Q(\omega_{k_1}, \omega_{k_m}) \leq \sum_j d_Q(\omega_{k_j}, \omega_{k_{j+1}}) \leq \sum_j k_{j+1} - k_j \leq n - 1,
\]
and so it follows that
\[
d(\nu_0, \nu_n) \leq d_Q(\omega_{k_1}, \omega_{k_m}) \leq n - 1.
\]
As $d(\nu_0, \nu_n)$ is in fact equal to n, this is a contradiction and the statement of Theorem 4 follows. \qed

5. Proof of Corollary 5

We will need the following two results. The first identifies examples of doubled Farey graphs in the pants graph, and the second recalls a standard property of graph doubles.
Lemma 7. Let Q be a 2-handle multicurve on Σ. Then, the graph \mathcal{P}_Q is isomorphic to the double of a Farey graph.

Proof. Let Q_1 and Q_2 be two disjoint rank 1 multicurves on Σ such that $Q_1 \cap Q_2$ is equal to Q. There exist natural retractions $\pi_i : \mathcal{P}_Q \to \mathcal{P}_{Q_i}$, for $i \in \{1, 2\}$, and there exists an isomorphism $\phi : \mathcal{P}_{Q_2} \to \mathcal{P}_{Q_1}$. The map $f : \mathcal{P} \to \mathcal{P}_{Q_1} \ast \mathcal{P}_{Q_2}$ defined by $f(v) = (\pi_1(v), \phi \circ \pi_2(v))$, for all vertices v of \mathcal{P}, is thus an isomorphism. Finally, recall that \mathcal{P}_{Q_1} is a Farey graph. □

The following statement is standard, and we omit its proof.

Lemma 8. Let G be a graph, and denote by L a convex subgraph of G. Then, the graph double $L \ast L$ is a convex subgraph of $G \ast G$.

Proof of Corollary 3. Let Q be any 2-handle multicurve on Σ, so that \mathcal{P}_Q is isomorphic to the double of a Farey graph. Every bi-infinite geodesic L is convex (but not necessarily totally geodesic), and the double $L \ast L$ is a convex subgraph of the totally geodesic subgraph \mathcal{P}_Q of \mathcal{P}. Thus, $L \ast L$ is a convex subgraph of \mathcal{P}. Finally, $L \ast L$ is isomorphic to the Cayley graph of $\mathbb{Z} \oplus \mathbb{Z}$ with standard generating set, and as such is a plane. □

For complexity 3 surfaces, the convex planes are all contained in 2-handle subgraphs.

Lemma 9. Suppose Σ is of complexity 3, thus either the 6-holed sphere, the 3-holed torus, or the closed surface of genus 2. Then, every convex plane in $\mathcal{P}(\Sigma)$ is contained in a 2-handle subgraph.

Proof. A 4-cycle in a convex plane is not contained in a single Farey graph and as such uniquely determines a separating curve, namely that common to each of its four pants decompositions. Any adjacent 4-cycle intersects the original 4-cycle in an edge, and thus in at least one vertex. It follows that the same separating curve must be common to each of the second 4-cycle’s four pants decompositions. The proof is completed by an induction, appealing to the connectivity of a plane. □

Acknowledgements

The third author gratefully acknowledges the Department of Mathematical and Computing Sciences at the Tokyo Institute of Technology for its warm hospitality. The authors wish to thank Eiko Kin, Sadayoshi Kojima, Saul Schleimer, and Mitsuhiko Takasawa for several interesting conversations. The authors also wish to thank the referee for making numerous suggestions that greatly enhanced the exposition.

References

Department of Mathematics, National University of Ireland, Galway, Ireland

E-mail address: Javier.Aramayona@nuigalway.ie
URL: http://www.maths.nuigalway.ie

Institute of Geometry, Algebra and Topology, École Polytechnique Fédérale de Lausanne, Bâtiment BCH, CH-1015 Lausanne, Switzerland

E-mail address: hugo.parlier@epfl.ch
URL: http://igat.epfl.ch

University of Tokyo IPMU, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8568, Japan

E-mail address: kenneth.shackleton@ipmu.jp
E-mail address: kjs2006@alumni.soton.ac.uk
URL: http://member.ipmu.jp/kenneth.shackleton/