PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 137, Number 10, October 2009, Pages 3227-3233
S 0002-9939(09)09913-4

Article electronically published on May 27, 2009

AFFINE ALGEBRAIC MONOIDS AS ENDOMORPHISMS’
MONOIDS OF FINITE-DIMENSIONAL ALGEBRAS

ALEXANDER PEREPECHKO

(Communicated by Birge Huisgen-Zimmermann)

ABSTRACT. We prove that any affine algebraic monoid can be obtained as the
endomorphisms’ monoid of a finite-dimensional (nonassociative) algebra.

1. INTRODUCTION

Let K be an algebraically closed field of arbitrary characteristic. Recall that an
affine algebraic semigroup is an affine variety M over K with an associative product
w: M x M — M, which is a morphism of algebraic varieties. Denote an element
w(a,b) by ab. A semigroup is called a monoid if it contains an identity element
e € M such that em = me = m for any m € M. An element 0 € M is called
zero if Om = m0 = 0 for any m € M. Obviously, a monoid cannot contain more
than one zero. It is well known that every affine algebraic monoid is isomorphic
to a Zariski closed submonoid of the monoid L(V') of all linear operators on some
finite-dimensional vector space V; e.g. see [4, Theorem 3.8] or [I, Lemma 1.11]. A
systematic account of the theory of affine algebraic monoids is given in [3] and [4].
The classification of irreducible affine monoids, whose unit group is reductive, is
obtained in [5] and [0].

Let A be a finite-dimensional algebra over the field K, i.e. a finite-dimensional
vector space A with a bilinear map a: A x A — A. Note that the associativity or
commutativity of the map « is not assumed. It is convenient to denote by vect(A)
the underlying vector space of an algebra A. By an ideal of an algebra A we mean
a two-sided ideal. An algebra A is called simple if it does not contain proper ideals.
The set of all endomorphisms of A,

End(A) := {¢ € L(vect(A4)) | a(¢(a), p(b)) = ¢(a(a,b)) for a,b € A},

is a monoid with respect to composition. It is easy to check that this monoid is
Zariski closed in L(vect(A)); therefore it is an affine algebraic monoid.

It is shown in [2] that any affine algebraic group can be realized as the group
of automorphisms of some finite-dimensional simple algebra. This paper aims to
obtain a similar realization of an arbitrary affine algebraic monoid M as the endo-
morphisms’ monoid of a finite-dimensional algebra A. In this case two differences
occur. First, we cannot assume that A is simple, since the kernel of any endomor-
phism is an ideal of A. Second, the monoid End(A) contains the zero 3 € End(A),
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3(a) = 0 for any a € A, while M does not necessarily contain a zero. Under these
circumstances we obtain the following result.

Theorem 1.1. For any affine algebraic monoid M there exists a finite-dimensional
algebra A such that End(A) = M U {3}, where {3} is an (isolated) component of
the monoid End(A).

Particularly, if M is an affine algebraic group, then there exists an algebra A
such that Aut(A4) = M (see [2]).

Example 1.2. Let us consider the monoid M = L(V) for a finite-dimensional
space V. Then we may take the algebra A constructed in the following way. First,
let e be a left identity of A and

vect(A) = (e) ®V,

where (X) stands for the linear span of a set X. Next, for any v,w € V put
a(v,w) = 0, a(v,e) = Av, where A € K\ {0,1}. Taking into account equations
afe,v) = v and a(e, e) = e, we obtain the multiplication table for A.

Note that any endomorphism sends e to e or 0, since these two are the only
idempotents of A. This way, the reader will easily prove that End(A4) = L(V)U{3}.

Example 1.3. Assume char K # 2. Consider a two-dimensional space V over K
with a basis {v1,v2} and the exterior algebra A(V) with a basis {1, v1, va, v1 Ava}.
Let us take a monoid M C L(vect(A(V))),

1 0 0 0
L 0 bix bz O _ bir b2 o
R S d_det(b21 bﬂ),b”,czeK
0 C1 C2 d

One may prove that M acts on A(V) by endomorphisms. Moreover, End(A(V)) =
M U{3}. Generally, a similar equation holds for the exterior algebra of an arbitrary
space.

The proof of Theorem [[T] consists of two steps. First, for every finite-dimensional
space U and its subspace S we construct a finite-dimensional algebra A such that
End(A) is isomorphic to L(U)s U {3}, where L(U)g is the normalizer of some vector
subspace S of a special L(U)-module. Second, an arbitrary affine algebraic monoid
M is represented as L(U)g for appropriate U and S. Overall, we follow the scheme
of the proof in [2], but the ideas of the first step are significantly changed.

2. SOME SPECIAL ALGEBRAS

In this section we define and study some finite-dimensional algebras to be used
hereafter.

2.1. Algebra A(V,S). Let V be a nonzero finite-dimensional vector space. Denote
by T(V) the tensor algebra of V and by T(V); its maximal homogeneous ideal,

(2.1) T(V)4 = @@1‘/@’
endowed with the natural L(V)-structure
(2.2) g-ti==g%(t;), geL(V), t; eV,

Thus, L(V) acts on T(V) 4 faithfully by endomorphisms. Therefore we may identify
L(V) with the corresponding submonoid of End(T(V),).
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Fix an integer r > 1. For an arbitrary subspace S C V®" we define

(2.3) I1(S) == S® (P,., V).

It is an ideal of T(V),. Define A(V,S) as the factor algebra modulo this ideal,
(2.4 AV, 8) i= (V). /1(5).

Then

(2.5) vect(A(V, S)) = (B2, V) @ (VET/S).
We may consider L(V)g := {¢ € L(V) | ¢(S) C S} C L(V).
Proposition 2.1. {o € End(A(V,S)) | (V) CV} =L(V)s.

Proof. By definition, elements of A(V,S) are equivalence classes x + I(S), = €
T(V)4. Let us prove the inclusion C. Consider ¢ € End(A(V,S)) such that
(V) C V. Then the o-action coincides with the action of ¢ := o]y € L(V) on
A(V,S) in accordance with (2:2), since the algebra A(V,.S) is generated by V. The
o-action preserves the zero of A(V,S); hence o(I(S)) C I(S) and o € L(V)s.

Now we prove the inverse inclusion. For arbitrary subsets X, Y C T(V) define
XV ={zy|lrze X,yeY} CT(V). Let 0 € L(V)s. Then o((z + I(9)) ®
(y+1(9))) Co(z@y)+I(S) =o(x)®0c(y)+I(S) by definition of the L(V')-action
on T(V),. Hence o € End(A(V, 5)). O

2.2. Algebra D(P,U,S,~).

Lemma 2.2. Let A be an algebra with o left identity e € A such that vect(A) =
() ® AL @ --- @ Ay, where A; is the eigenspace with an eigenvalue o; # 0,1 for
the operator of right multiplication of A by e. Assume that 0 and e are the only
idempotents in A. Then

(i) e is the unique left identity in A;

(ii) #f o € End(A), then either o(e) = e and o(A;) C A; for any i, or o =3}.

Proof. (i) The left identity is a nonzero idempotent. Hence it is unique.

(ii) Since the image of an idempotent is an idempotent, o(e) =0 or o(e) = e. If
o(e) =0, then o(a) = o(ea) = o(e)o(a) =0, i.e. 0 = 3. Now assume that o(e) = e.
Then o(A;) is the eigenspace with an eigenvalue «; # 0,1 for the operator of right
multiplication by e. Hence o(A;) C A;. O

Let P be a two-dimensional vector space with a basis {p1,p2}, U be a nonzero
finite-dimensional space, and

(2.6) Vi=PaU.
Fix an integer r > 1 as well as
(i) a subspace S C V®;
(ii) a sequence v = (71,...,7) € (K\ {0,1})8, ~; # ~; for i # j.
Define an algebra D(P,U, S,~) in the following way. First, A(V,.S) is the subal-
gebra of D(P,U, S,v) and elements b, ¢,d,e € D(P,U, S,~) are such that
(2.7) vect(D(P, U, S,7)) = (e) @ (b) & (c) ® (d) ® vect(A(V, 5)).
Second, the following conditions hold:
(D1) e is the left identity of D(P,U, S, 7).
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(D2) (b), (¢), (d) as well as P,U C V = V& C A(V,S) and (D, V) @
(ver/S)y c A(V,S) are the eigenspaces with the eigenvalues 7, ..., ",
respectively, of the operator of right multiplication by e.

(D3) The multiplication table for b, ¢, d is

b-b:=0, b-c:=c+veb, b-d:
(2.8) c-b:i=—c, c-c:=b, c-d:
d-b:=p, d-c:=d, d-d:

0,

67

D2,
where v, = 2=1L,

(D4) (b, c,d) - A(V,S) = A(V,S) - (b,c,d) = 0.

Define the action of g € L(V)g on vect(D(P,U, S,v)) as follows: g|uy = gl() =
9@y = 9ley = id, gly is the natural L(V)-action on V, and on other summands
of A(V,S) it is defined by ([22). By Proposition 2] we may identify L(V)s with
the corresponding submonoid of L(vect(D(P,U, S,v))). Further, we may consider
an embedding L(U) < L(V), h+— id|p & h. Thus, L(U)s C L(V)g, and we obtain
the L(U)g-action on vect(D(P,U, S,7)).

Proposition 2.3. We have
End(D(P,U,,7)) = L(U)s U {3},
where {3} is an (isolated) component of the monoid End(D(P,U, S,7)).

Proof. First of all, we show that 0 and e are the only idempotents of D(P,U, S, 7).
Indeed, let € = Ace + A\pb + Ao + Agd + a, where a € A(V, S). Then
(29) €* = (A2 +Aeda)e + (Al +71) + A2 + XpAepe)b
+ )\C)\e(l + ’YQ)C + ((1 + 73)>\d)\e + )\d/\c)d +ad
= Aie + Aad + Azc + M\ + a, where a,a’ € A(V,S).

Hence

(2.10) Ae = A2+ Acha,

(2.11) A = ApAe(1+71) + A2 + Ao AcToe,
(2.12) Ae = AcAe(1 +72),

(2.13) At = Aade(1+73) + Aeha.

Assume A\, # 0. By @I2), 1 +72 # 0, = ﬁ and A\ Ag = Ao — A2 £ 0, so
Ad # 0. Hence equation (2.I3) implies Ac = 1 — Ac(1 4+ 73) = 2. Finally, by
ZII) we have A2 = X\p(1 — Ae(1+ Y1) — AeVoe) = Mo(Fp — 50 - =) =0,
From this contradiction we deduce A, = 0.

Moreover, A, = 0 or A\, = 1 by @IQ). If A, = 0, then A\, = Ny = 0, ¢ =
a € A(V,S) and € = 0, since zero is the only idempotent of A(V,S). Now assume
Xe = 1. From equations (ZI1)) and [2I3) accordingly follow A\, = 0 and Ag = 0.
Thus, e = e+a, a € AV, S).

Let @ = ap + ay + ax, where ap € P,ay € U,ax € (@:;QIV@) ® (Ver/s).
Then

(2.14) e2=e+ (1+ya)ap + (1 +7s5)ay +ds = e+ ap +ay + ax,
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where af, € (B, V) ® (VE"/S). Hence ay = ap = 0. Assume ax; # 0. Then
we may write axy, = ag+...+a,, ax # 0, where a; € V®' for i < r and a, € V¥7/8S.
This way,

(2.15) (etap+...+a ) =e+(1+v)ax+ad =e+ap+...+a,,

where a” € (@;z_kl,HV@i) ® (V®r/8) for k < r and a” = 0 for k = r. This implies
ar = 0, a contradiction. Hence ay; = 0 and ¢ = e.

Thus, D(P,U, S,v) contains no idempotents different from 0 and e. Let o €
End(D(P,U,S,v)\ {3}. By Lemma[Z2 o(e) = e and (b), (c), (d), P, U, A(V,S)
are o-invariant. Let o(b) = &b, o(c) = dc¢, o(d) = dgd. The equations cd =
e, dc = d, cb = —c imply 6,04 = 1, §.0q = g, Op0. = .. One may check that
0p = 0. = 6q = 1. Finally, the equations db = p;, dd = py imply o|p = idp.

Since V and A(V, S) are o-invariant, o|(v,s) € L(V)s by Proposition 21l Tak-
ing into account o|p = idp and o(U) C U, we obtain ¢ € L(U)g. O

3. AFFINE MONOIDS AS THE NORMALIZERS OF LINEAR SUBSPACES

Proposition 3.1. Let M be an affine algebraic monoid. There is a finite-dimen-
sional vector space U and an integer r > 1 such that the following holds. Let P be
a two-dimensional vector space with a trivial L(U)-action. Then the L(U)-module
(P@U)®" contains a linear subspace S such that L(U)g =2

Proof. Since there exists a closed embedding M < L(U) for some finite-dimensional
space U, we may suppose M C L(U). Consider the action of L(U) on itself by left
multiplication. Additionally, consider the L(U)-action on the algebra K[L(U)] of
regular functions on L(U),

(3.1) (- F)(u) = f(ug), g,ueLU),feK[LU)

Denote d := dimU. Note that the L(U)-modules K[L(U)] and Sym(U®?) are
isomorphic. To prove this, it suffices to associate a linear function on L(U) to every
vector (uy,...,uq) € U4 since K[L(U)] = Sym(L(U)*). Identify U with K¢, L(U)
with Matgxq(K); let A be in L(U), B be a matrix with columns wuy,...,uq. Set
luy,..ug(A) :=tr AB. Then (g-lu,,....u,)(A) = tr AgB = lgu, ... gu, (A); i.e. we have
an L(U)-equivariant isomorphism.

By the definition of a symmetric algebra fix a natural epimorphism

(3.2) &: T(U%) — Sym(UP?) = K[L(U)].
There is a finite-dimensional subspace W C K[L(U)] such that
(3.3) L(U)w = M.

In order to prove this, one may show that a linear span of an L(U)-‘orbit’ of an
arbitrary function f € K[L(U)] is finite-dimensional. Indeed, since the L(U)-action
is a morphism, (g- f)(u) = f(ug) € K[L(U) x L(U)] = K[L(U)] ® K[L(U)], where
u,g € L(U), there are functions F;, H; € K[L(U)] such that

n

(3-4) (9-)(w) = F(u)Hj(g).

Jj=1

Therefore, the L(U)-‘orbit’ of the function f is contained in the finite-dimensional
subspace (Fi,..., Fy,).
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Let I(M) = (f1,..., ft) < K[L(U)] be the ideal of functions vanishing on M.
Summing the linear spans of L(U)-‘orbits’ of the functions f; we obtain a finite-
dimensional L(U)-invariant subspace V' C K[L(U)]. Define W = I(M)NV. First, it
contains fi,..., f;. Second, it is M-invariant, since the ideal I(M) is M-invariant.
Obviously, g € M implies g- W C W. On the other hand, suppose that g- W C W,
where g € L(U). Then fi(g) = (g fi)(E) = 0 for ¢ = 1,...,t, where F is the
identity of L(U) and is automatically contained in M. Therefore, g € M. This
proves (3.3]).

Further, since the space W is finite-dimensional, there is an integer h € Z such
that

(35) W C &(@icn(UT)).
Define W' := =1 (W) N (P, (U?)®"). The L(U)-equivariance of £ implies
(3.6) L(U)w =LU)w.

Fix a basis {p1,p2} of the space P. There exists an embedding of L(U)-modules
(3.7) v T(U%) < T((m) ®U).

Indeed, let U; be the ith summand of U®?. Consider an arbitrary basis { fij lg=
1,...,d} of U; and define an embedding as follows:

(3.8) Wfirjy ® .. ® fij) =05 @ fl;, @...@pY" @ fl,

where f;; is the image of f;; under the identity isomorphism U; — U. It is easy

to check that the embedding ¢: T(U®?) — T((p1) ® U) defined on the basis of
T(U®?), by formula [3.8) and sending 1 to 1 is the one required.
Now we may consider a space W' := ((W'),

(3.9) L(U)wr = LU
Since W is finite-dimensional, there exists an integer b € N such that

(3.10) W C Prey((pr) & U)

Take r > b such that r > 1 and consider a linear mapping

(311) 1 Dy (1) @ V) = (P& U, fimps " @ fi fi € () & V)™
Obviously, ¢, is an embedding of L(U)-modules. Define S = ¢,.(W"). Then

(3.12) L(U)s = L(U)wn.

Now the claim follows from equations (3.3), (B.6]), (3.9) and BI2]). O

Proof of Theorem[I.Il Let M be an arbitrary affine algebraic monoid, U, b, r, P, S
be as in Proposition Bl Fix some set v € (K \ {0,1})® such that v; # «; for
i # j, and consider the algebra D(P,U, S,~). It follows from Proposition B.] and
Proposition 223 that End(D(P, U, S,~)) = M U {3}.
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