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AFFINE ALGEBRAIC MONOIDS AS ENDOMORPHISMS’

MONOIDS OF FINITE-DIMENSIONAL ALGEBRAS

ALEXANDER PEREPECHKO

(Communicated by Birge Huisgen-Zimmermann)

Abstract. We prove that any affine algebraic monoid can be obtained as the
endomorphisms’ monoid of a finite-dimensional (nonassociative) algebra.

1. Introduction

Let K be an algebraically closed field of arbitrary characteristic. Recall that an
affine algebraic semigroup is an affine variety 𝑀 over K with an associative product
𝜇 : 𝑀 ×𝑀 → 𝑀 , which is a morphism of algebraic varieties. Denote an element
𝜇(𝑎, 𝑏) by 𝑎𝑏. A semigroup is called a monoid if it contains an identity element
𝑒 ∈ 𝑀 such that 𝑒𝑚 = 𝑚𝑒 = 𝑚 for any 𝑚 ∈ 𝑀 . An element 0 ∈ 𝑀 is called
zero if 0𝑚 = 𝑚0 = 0 for any 𝑚 ∈ 𝑀 . Obviously, a monoid cannot contain more
than one zero. It is well known that every affine algebraic monoid is isomorphic
to a Zariski closed submonoid of the monoid L(𝑉 ) of all linear operators on some
finite-dimensional vector space 𝑉 ; e.g. see [4, Theorem 3.8] or [1, Lemma 1.11]. A
systematic account of the theory of affine algebraic monoids is given in [3] and [4].
The classification of irreducible affine monoids, whose unit group is reductive, is
obtained in [5] and [6].

Let 𝐴 be a finite-dimensional algebra over the field K, i.e. a finite-dimensional
vector space 𝐴 with a bilinear map 𝛼 : 𝐴× 𝐴 → 𝐴. Note that the associativity or
commutativity of the map 𝛼 is not assumed. It is convenient to denote by vect(𝐴)
the underlying vector space of an algebra 𝐴. By an ideal of an algebra 𝐴 we mean
a two-sided ideal. An algebra 𝐴 is called simple if it does not contain proper ideals.
The set of all endomorphisms of 𝐴,

End(𝐴) := {𝜙 ∈ L(vect(𝐴)) ∣ 𝛼(𝜙(𝑎), 𝜙(𝑏)) = 𝜙(𝛼(𝑎, 𝑏)) for 𝑎, 𝑏 ∈ 𝐴},
is a monoid with respect to composition. It is easy to check that this monoid is
Zariski closed in L(vect(𝐴)); therefore it is an affine algebraic monoid.

It is shown in [2] that any affine algebraic group can be realized as the group
of automorphisms of some finite-dimensional simple algebra. This paper aims to
obtain a similar realization of an arbitrary affine algebraic monoid 𝑀 as the endo-
morphisms’ monoid of a finite-dimensional algebra 𝐴. In this case two differences
occur. First, we cannot assume that 𝐴 is simple, since the kernel of any endomor-
phism is an ideal of 𝐴. Second, the monoid End(𝐴) contains the zero 𝔷 ∈ End(𝐴),
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𝔷(𝑎) = 0 for any 𝑎 ∈ 𝐴, while 𝑀 does not necessarily contain a zero. Under these
circumstances we obtain the following result.

Theorem 1.1. For any affine algebraic monoid𝑀 there exists a finite-dimensional
algebra 𝐴 such that End(𝐴) ∼= 𝑀 ⊔ {𝔷}, where {𝔷} is an (isolated) component of
the monoid End(𝐴).

Particularly, if 𝑀 is an affine algebraic group, then there exists an algebra 𝐴
such that Aut(𝐴) ∼= 𝑀 (see [2]).

Example 1.2. Let us consider the monoid 𝑀 = L(𝑉 ) for a finite-dimensional
space 𝑉 . Then we may take the algebra 𝐴 constructed in the following way. First,
let 𝑒 be a left identity of 𝐴 and

vect(𝐴) := ⟨𝑒⟩ ⊕ 𝑉,

where ⟨𝑋⟩ stands for the linear span of a set 𝑋. Next, for any 𝑣, 𝑤 ∈ 𝑉 put
𝛼(𝑣, 𝑤) = 0, 𝛼(𝑣, 𝑒) = 𝜆𝑣, where 𝜆 ∈ K ∖ {0, 1}. Taking into account equations
𝛼(𝑒, 𝑣) = 𝑣 and 𝛼(𝑒, 𝑒) = 𝑒, we obtain the multiplication table for 𝐴.

Note that any endomorphism sends 𝑒 to 𝑒 or 0, since these two are the only
idempotents of 𝐴. This way, the reader will easily prove that End(𝐴) ∼= L(𝑉 )⊔{𝔷}.
Example 1.3. Assume char K ∕= 2. Consider a two-dimensional space 𝑉 over K
with a basis {𝑣1, 𝑣2} and the exterior algebra Λ(𝑉 ) with a basis {1, 𝑣1, 𝑣2, 𝑣1 ∧ 𝑣2}.
Let us take a monoid 𝑀 ⊂ L(vect(Λ(𝑉 ))),

𝑀 :=

⎧⎨
⎩

⎛
⎜⎜⎝

1 0 0 0
0 𝑏11 𝑏12 0
0 𝑏21 𝑏22 0
0 𝑐1 𝑐2 𝑑

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
𝑑 = det

(
𝑏11 𝑏12
𝑏21 𝑏22

)
, 𝑏𝑖𝑗 , 𝑐𝑖 ∈ K

⎫⎬
⎭ .

One may prove that 𝑀 acts on Λ(𝑉 ) by endomorphisms. Moreover, End(Λ(𝑉 )) =
𝑀 ⊔{𝔷}. Generally, a similar equation holds for the exterior algebra of an arbitrary
space.

The proof of Theorem 1.1 consists of two steps. First, for every finite-dimensional
space 𝑈 and its subspace 𝑆 we construct a finite-dimensional algebra 𝐴 such that
End(𝐴) is isomorphic to L(𝑈)𝑆 ⊔{𝔷}, where L(𝑈)𝑆 is the normalizer of some vector
subspace 𝑆 of a special L(𝑈)-module. Second, an arbitrary affine algebraic monoid
𝑀 is represented as L(𝑈)𝑆 for appropriate 𝑈 and 𝑆. Overall, we follow the scheme
of the proof in [2], but the ideas of the first step are significantly changed.

2. Some special algebras

In this section we define and study some finite-dimensional algebras to be used
hereafter.

2.1. Algebra 𝐴(𝑉, 𝑆). Let 𝑉 be a nonzero finite-dimensional vector space. Denote
by T(𝑉 ) the tensor algebra of 𝑉 and by T(𝑉 )+ its maximal homogeneous ideal,

(2.1) T(𝑉 )+ :=
⊕

𝑖⩾1𝑉
⊗𝑖,

endowed with the natural L(𝑉 )-structure

(2.2) 𝑔 ⋅ 𝑡𝑖 := 𝑔⊗𝑖(𝑡𝑖), 𝑔 ∈ L(𝑉 ), 𝑡𝑖 ∈ 𝑉 ⊗𝑖.

Thus, L(𝑉 ) acts on T(𝑉 )+ faithfully by endomorphisms. Therefore we may identify
L(𝑉 ) with the corresponding submonoid of End(T(𝑉 )+).
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Fix an integer 𝑟 > 1. For an arbitrary subspace 𝑆 ⊆ 𝑉 ⊗𝑟 we define

(2.3) 𝐼(𝑆) := 𝑆 ⊕ (
⊕

𝑖>𝑟𝑉
⊗𝑖).

It is an ideal of T(𝑉 )+. Define 𝐴(𝑉, 𝑆) as the factor algebra modulo this ideal,

(2.4) 𝐴(𝑉, 𝑆) := T(𝑉 )+/𝐼(𝑆).

Then

(2.5) vect(𝐴(𝑉, 𝑆)) = (
⊕𝑟−1

𝑖=1𝑉
⊗𝑖)⊕ (𝑉 ⊗𝑟/𝑆).

We may consider L(𝑉 )𝑆 := {𝜙 ∈ L(𝑉 ) ∣ 𝜙(𝑆) ⊆ 𝑆} ⊂ L(𝑉 ).

Proposition 2.1. {𝜎 ∈ End(𝐴(𝑉, 𝑆)) ∣ 𝜎(𝑉 ) ⊆ 𝑉 } = L(𝑉 )𝑆.

Proof. By definition, elements of 𝐴(𝑉, 𝑆) are equivalence classes 𝑥 + 𝐼(𝑆), 𝑥 ∈
T(𝑉 )+. Let us prove the inclusion ⊆. Consider 𝜎 ∈ End(𝐴(𝑉, 𝑆)) such that
𝜎(𝑉 ) ⊆ 𝑉 . Then the 𝜎-action coincides with the action of 𝜎 := 𝜎∣𝑉 ∈ L(𝑉 ) on
𝐴(𝑉, 𝑆) in accordance with (2.2), since the algebra 𝐴(𝑉, 𝑆) is generated by 𝑉 . The
𝜎-action preserves the zero of 𝐴(𝑉, 𝑆); hence 𝜎(𝐼(𝑆)) ⊆ 𝐼(𝑆) and 𝜎 ∈ L(𝑉 )𝑆 .

Now we prove the inverse inclusion. For arbitrary subsets 𝑋,𝑌 ⊂ T(𝑉 ) define
𝑋 ⊗ 𝑌 := {𝑥 ⊗ 𝑦 ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 } ⊂ T(𝑉 ). Let 𝜎 ∈ L(𝑉 )𝑆 . Then 𝜎((𝑥 + 𝐼(𝑆)) ⊗
(𝑦+ 𝐼(𝑆))) ⊆ 𝜎(𝑥⊗𝑦)+ 𝐼(𝑆) = 𝜎(𝑥)⊗𝜎(𝑦)+ 𝐼(𝑆) by definition of the L(𝑉 )-action
on T(𝑉 )+. Hence 𝜎 ∈ End(𝐴(𝑉, 𝑆)). □

2.2. Algebra 𝐷(𝑃,𝑈, 𝑆, 𝛾).

Lemma 2.2. Let 𝐴 be an algebra with a left identity 𝑒 ∈ 𝐴 such that vect(𝐴) =
⟨𝑒⟩ ⊕ 𝐴1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝐴𝑟, where 𝐴𝑖 is the eigenspace with an eigenvalue 𝛼𝑖 ∕= 0, 1 for
the operator of right multiplication of 𝐴 by 𝑒. Assume that 0 and 𝑒 are the only
idempotents in 𝐴. Then

(i) 𝑒 is the unique left identity in 𝐴;
(ii) if 𝜎 ∈ End(𝐴), then either 𝜎(𝑒) = 𝑒 and 𝜎(𝐴𝑖) ⊆ 𝐴𝑖 for any 𝑖, or 𝜎 = 𝔷.

Proof. (i) The left identity is a nonzero idempotent. Hence it is unique.
(ii) Since the image of an idempotent is an idempotent, 𝜎(𝑒) = 0 or 𝜎(𝑒) = 𝑒. If

𝜎(𝑒) = 0, then 𝜎(𝑎) = 𝜎(𝑒𝑎) = 𝜎(𝑒)𝜎(𝑎) = 0, i.e. 𝜎 = 𝔷. Now assume that 𝜎(𝑒) = 𝑒.
Then 𝜎(𝐴𝑖) is the eigenspace with an eigenvalue 𝛼𝑖 ∕= 0, 1 for the operator of right
multiplication by 𝑒. Hence 𝜎(𝐴𝑖) ⊆ 𝐴𝑖. □

Let 𝑃 be a two-dimensional vector space with a basis {𝑝1, 𝑝2}, 𝑈 be a nonzero
finite-dimensional space, and

(2.6) 𝑉 := 𝑃 ⊕ 𝑈.

Fix an integer 𝑟 > 1 as well as

(i) a subspace 𝑆 ⊂ 𝑉 ⊗𝑟;
(ii) a sequence 𝛾 = (𝛾1, . . . , 𝛾6) ∈ (K ∖ {0, 1})6, 𝛾𝑖 ∕= 𝛾𝑗 for 𝑖 ∕= 𝑗.

Define an algebra 𝐷(𝑃,𝑈, 𝑆, 𝛾) in the following way. First, 𝐴(𝑉, 𝑆) is the subal-
gebra of 𝐷(𝑃,𝑈, 𝑆, 𝛾) and elements 𝑏, 𝑐, 𝑑, 𝑒 ∈ 𝐷(𝑃,𝑈, 𝑆, 𝛾) are such that

(2.7) vect(𝐷(𝑃,𝑈, 𝑆, 𝛾)) = ⟨𝑒⟩ ⊕ ⟨𝑏⟩ ⊕ ⟨𝑐⟩ ⊕ ⟨𝑑⟩ ⊕ vect(𝐴(𝑉, 𝑆)).

Second, the following conditions hold:

(D1) 𝑒 is the left identity of 𝐷(𝑃,𝑈, 𝑆, 𝛾).
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(D2) ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑑⟩ as well as 𝑃,𝑈 ⊂ 𝑉 = 𝑉 ⊗1 ⊂ 𝐴(𝑉, 𝑆) and (
⊕𝑟−1

𝑖=2𝑉
⊗𝑖) ⊕

(𝑉 ⊗𝑟/𝑆) ⊂ 𝐴(𝑉, 𝑆) are the eigenspaces with the eigenvalues 𝛾1, . . . , 𝛾6,
respectively, of the operator of right multiplication by 𝑒.

(D3) The multiplication table for 𝑏, 𝑐, 𝑑 is

(2.8)
𝑏 ⋅ 𝑏 := 0, 𝑏 ⋅ 𝑐 := 𝑐+ 𝛾𝑏𝑐𝑏, 𝑏 ⋅ 𝑑 := 0,
𝑐 ⋅ 𝑏 := −𝑐, 𝑐 ⋅ 𝑐 := 𝑏, 𝑐 ⋅ 𝑑 := 𝑒,
𝑑 ⋅ 𝑏 := 𝑝1, 𝑑 ⋅ 𝑐 := 𝑑, 𝑑 ⋅ 𝑑 := 𝑝2,

where 𝛾𝑏𝑐 = 𝛾2−𝛾1

𝛾2−𝛾3
.

(D4) ⟨𝑏, 𝑐, 𝑑⟩ ⋅𝐴(𝑉, 𝑆) = 𝐴(𝑉, 𝑆) ⋅ ⟨𝑏, 𝑐, 𝑑⟩ = 0.

Define the action of 𝑔 ∈ L(𝑉 )𝑆 on vect(𝐷(𝑃,𝑈, 𝑆, 𝛾)) as follows: 𝑔∣⟨𝑏⟩ = 𝑔∣⟨𝑐⟩ =
𝑔∣⟨𝑑⟩ = 𝑔∣⟨𝑒⟩ = id, 𝑔∣𝑉 is the natural L(𝑉 )-action on 𝑉 , and on other summands
of 𝐴(𝑉, 𝑆) it is defined by (2.2). By Proposition 2.1 we may identify L(𝑉 )𝑆 with
the corresponding submonoid of L(vect(𝐷(𝑃,𝑈, 𝑆, 𝛾))). Further, we may consider
an embedding L(𝑈) ↪→ L(𝑉 ), ℎ �→ id∣𝑃 ⊕ ℎ. Thus, L(𝑈)𝑆 ⊆ L(𝑉 )𝑆 , and we obtain
the L(𝑈)𝑆-action on vect(𝐷(𝑃,𝑈, 𝑆, 𝛾)).

Proposition 2.3. We have

End(𝐷(𝑃,𝑈, 𝑆, 𝛾)) = L(𝑈)𝑆 ⊔ {𝔷},
where {𝔷} is an (isolated) component of the monoid End(𝐷(𝑃,𝑈, 𝑆, 𝛾)).

Proof. First of all, we show that 0 and 𝑒 are the only idempotents of 𝐷(𝑃,𝑈, 𝑆, 𝛾).
Indeed, let 𝜀 = 𝜆𝑒𝑒+ 𝜆𝑏𝑏+ 𝜆𝑐𝑐+ 𝜆𝑑𝑑+ 𝑎, where 𝑎 ∈ 𝐴(𝑉, 𝑆). Then

(2.9) 𝜀2 = (𝜆2𝑒 + 𝜆𝑐𝜆𝑑)𝑒+ (𝜆𝑏𝜆𝑒(1 + 𝛾1) + 𝜆2𝑐 + 𝜆𝑏𝜆𝑐𝛾𝑏𝑐)𝑏

+ 𝜆𝑐𝜆𝑒(1 + 𝛾2)𝑐+ ((1 + 𝛾3)𝜆𝑑𝜆𝑒 + 𝜆𝑑𝜆𝑐)𝑑+ 𝑎′

= 𝜆1𝑒+ 𝜆2𝑑+ 𝜆3𝑐+ 𝜆4𝑏+ 𝑎, where 𝑎, 𝑎′ ∈ 𝐴(𝑉, 𝑆).

Hence

𝜆𝑒 = 𝜆2𝑒 + 𝜆𝑐𝜆𝑑,(2.10)

𝜆𝑏 = 𝜆𝑏𝜆𝑒(1 + 𝛾1) + 𝜆2𝑐 + 𝜆𝑏𝜆𝑐𝛾𝑏𝑐,(2.11)

𝜆𝑐 = 𝜆𝑐𝜆𝑒(1 + 𝛾2),(2.12)

𝜆𝑑 = 𝜆𝑑𝜆𝑒(1 + 𝛾3) + 𝜆𝑐𝜆𝑑.(2.13)

Assume 𝜆𝑐 ∕= 0. By (2.12), 1 + 𝛾2 ∕= 0, 𝜆𝑒 = 1
1+𝛾2

and 𝜆𝑐𝜆𝑑 = 𝜆𝑒 − 𝜆2𝑒 ∕= 0, so

𝜆𝑑 ∕= 0. Hence equation (2.13) implies 𝜆𝑐 = 1 − 𝜆𝑒(1 + 𝛾3) = 𝛾2−𝛾3

1+𝛾2
. Finally, by

(2.11) we have 𝜆2𝑐 = 𝜆𝑏(1 − 𝜆𝑒(1 + 𝛾1) − 𝜆𝑐𝛾𝑏𝑐) = 𝜆𝑏(
𝛾2−𝛾1

1+𝛾2
− 𝛾2−𝛾3

1+𝛾2
⋅ 𝛾2−𝛾1

𝛾2−𝛾3
) = 0.

From this contradiction we deduce 𝜆𝑐 = 0.
Moreover, 𝜆𝑒 = 0 or 𝜆𝑒 = 1 by (2.10). If 𝜆𝑒 = 0, then 𝜆𝑏 = 𝜆𝑑 = 0, 𝜀 =

𝑎 ∈ 𝐴(𝑉, 𝑆) and 𝜀 = 0, since zero is the only idempotent of 𝐴(𝑉, 𝑆). Now assume
𝜆𝑒 = 1. From equations (2.11) and (2.13) accordingly follow 𝜆𝑏 = 0 and 𝜆𝑑 = 0.
Thus, 𝜀 = 𝑒+ 𝑎, 𝑎 ∈ 𝐴(𝑉, 𝑆).

Let 𝑎 = 𝑎𝑃 + 𝑎𝑈 + 𝑎Σ, where 𝑎𝑃 ∈ 𝑃, 𝑎𝑈 ∈ 𝑈, 𝑎Σ ∈ (
⊕𝑟−1

𝑖=2𝑉
⊗𝑖) ⊕ (𝑉 ⊗𝑟/𝑆).

Then

(2.14) 𝜀2 = 𝑒+ (1 + 𝛾4)𝑎𝑃 + (1 + 𝛾5)𝑎𝑈 + 𝑎′Σ = 𝑒+ 𝑎𝑃 + 𝑎𝑈 + 𝑎Σ,
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where 𝑎′Σ ∈ (
⊕𝑟−1

𝑖=2𝑉
⊗𝑖) ⊕ (𝑉 ⊗𝑟/𝑆). Hence 𝑎𝑈 = 𝑎𝑃 = 0. Assume 𝑎Σ ∕= 0. Then

we may write 𝑎Σ = 𝑎𝑘+ . . .+𝑎𝑟, 𝑎𝑘 ∕= 0, where 𝑎𝑖 ∈ 𝑉 ⊗𝑖 for 𝑖 < 𝑟 and 𝑎𝑟 ∈ 𝑉 ⊗𝑟/𝑆.
This way,

(2.15) (𝑒+ 𝑎𝑘 + . . .+ 𝑎𝑟)
2 = 𝑒+ (1 + 𝛾6)𝑎𝑘 + 𝑎′′ = 𝑒+ 𝑎𝑘 + . . .+ 𝑎𝑟,

where 𝑎′′ ∈ (
⊕𝑟−1

𝑖=𝑘+1𝑉
⊗𝑖)⊕ (𝑉 ⊗𝑟/𝑆) for 𝑘 < 𝑟 and 𝑎′′ = 0 for 𝑘 = 𝑟. This implies

𝑎𝑘 = 0, a contradiction. Hence 𝑎Σ = 0 and 𝜀 = 𝑒.
Thus, 𝐷(𝑃,𝑈, 𝑆, 𝛾) contains no idempotents different from 0 and 𝑒. Let 𝜎 ∈

End(𝐷(𝑃,𝑈, 𝑆, 𝛾)) ∖ {𝔷}. By Lemma 2.2, 𝜎(𝑒) = 𝑒 and ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑑⟩, 𝑃 , 𝑈 , 𝐴(𝑉, 𝑆)
are 𝜎-invariant. Let 𝜎(𝑏) = 𝛿𝑏𝑏, 𝜎(𝑐) = 𝛿𝑐𝑐, 𝜎(𝑑) = 𝛿𝑑𝑑. The equations 𝑐𝑑 =
𝑒, 𝑑𝑐 = 𝑑, 𝑐𝑏 = −𝑐 imply 𝛿𝑐𝛿𝑑 = 1, 𝛿𝑐𝛿𝑑 = 𝛿𝑑, 𝛿𝑏𝛿𝑐 = 𝛿𝑐. One may check that
𝛿𝑏 = 𝛿𝑐 = 𝛿𝑑 = 1. Finally, the equations 𝑑𝑏 = 𝑝1, 𝑑𝑑 = 𝑝2 imply 𝜎∣𝑃 = id𝑃 .

Since 𝑉 and 𝐴(𝑉, 𝑆) are 𝜎-invariant, 𝜎∣𝐴(𝑉,𝑆) ∈ L(𝑉 )𝑆 by Proposition 2.1. Tak-
ing into account 𝜎∣𝑃 = id𝑃 and 𝜎(𝑈) ⊆ 𝑈 , we obtain 𝜎 ∈ L(𝑈)𝑆 . □

3. Affine monoids as the normalizers of linear subspaces

Proposition 3.1. Let 𝑀 be an affine algebraic monoid. There is a finite-dimen-
sional vector space 𝑈 and an integer 𝑟 > 1 such that the following holds. Let 𝑃 be
a two-dimensional vector space with a trivial L(𝑈)-action. Then the L(𝑈)-module
(𝑃 ⊕ 𝑈)⊗𝑟 contains a linear subspace 𝑆 such that L(𝑈)𝑆 ∼= 𝑀 .

Proof. Since there exists a closed embedding𝑀 ↪→ L(𝑈) for some finite-dimensional
space 𝑈 , we may suppose 𝑀 ⊆ L(𝑈). Consider the action of L(𝑈) on itself by left
multiplication. Additionally, consider the L(𝑈)-action on the algebra K[L(𝑈)] of
regular functions on L(𝑈),

(3.1) (𝑔 ⋅ 𝑓)(𝑢) := 𝑓(𝑢𝑔), 𝑔, 𝑢 ∈ L(𝑈), 𝑓 ∈ K[L(𝑈)].

Denote 𝑑 := dim𝑈 . Note that the L(𝑈)-modules K[L(𝑈)] and Sym(𝑈⊕𝑑) are
isomorphic. To prove this, it suffices to associate a linear function on L(𝑈) to every
vector (𝑢1, . . . , 𝑢𝑑) ∈ 𝑈⊕𝑑, since K[L(𝑈)] = Sym(L(𝑈)∗). Identify 𝑈 with K𝑑, L(𝑈)
with Mat𝑑×𝑑(K); let 𝐴 be in L(𝑈), 𝐵 be a matrix with columns 𝑢1, . . . , 𝑢𝑑. Set
𝑙𝑢1,...,𝑢𝑑

(𝐴) := tr𝐴𝐵. Then (𝑔 ⋅ 𝑙𝑢1,...,𝑢𝑑
)(𝐴) = tr𝐴𝑔𝐵 = 𝑙𝑔𝑢1,...,𝑔𝑢𝑑

(𝐴); i.e. we have
an L(𝑈)-equivariant isomorphism.

By the definition of a symmetric algebra fix a natural epimorphism

(3.2) 𝜉 : T(𝑈⊕𝑑) → Sym(𝑈⊕𝑑) ∼= K[L(𝑈)].

There is a finite-dimensional subspace 𝑊 ⊂ K[L(𝑈)] such that

(3.3) L(𝑈)𝑊 = 𝑀.

In order to prove this, one may show that a linear span of an L(𝑈)-‘orbit’ of an
arbitrary function 𝑓 ∈ K[L(𝑈)] is finite-dimensional. Indeed, since the L(𝑈)-action
is a morphism, (𝑔 ⋅ 𝑓)(𝑢) = 𝑓(𝑢𝑔) ∈ K[L(𝑈) × L(𝑈)] = K[L(𝑈)] ⊗ K[L(𝑈)], where
𝑢, 𝑔 ∈ L(𝑈), there are functions 𝐹𝑗 , 𝐻𝑗 ∈ K[L(𝑈)] such that

(3.4) (𝑔 ⋅ 𝑓)(𝑢) =
𝑛∑

𝑗=1

𝐹𝑗(𝑢)𝐻𝑗(𝑔).

Therefore, the L(𝑈)-‘orbit’ of the function 𝑓 is contained in the finite-dimensional
subspace ⟨𝐹1, . . . , 𝐹𝑛⟩.
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Let 𝐼(𝑀) = (𝑓1, . . . , 𝑓𝑡) ⊲ K[L(𝑈)] be the ideal of functions vanishing on 𝑀 .
Summing the linear spans of L(𝑈)-‘orbits’ of the functions 𝑓𝑖 we obtain a finite-
dimensional L(𝑈)-invariant subspace 𝑉 ⊂ K[L(𝑈)]. Define 𝑊 = 𝐼(𝑀)∩𝑉 . First, it
contains 𝑓1, . . . , 𝑓𝑡. Second, it is 𝑀 -invariant, since the ideal 𝐼(𝑀) is 𝑀 -invariant.
Obviously, 𝑔 ∈𝑀 implies 𝑔 ⋅𝑊 ⊆𝑊 . On the other hand, suppose that 𝑔 ⋅𝑊 ⊆𝑊 ,
where 𝑔 ∈ L(𝑈). Then 𝑓𝑖(𝑔) = (𝑔 ⋅ 𝑓𝑖)(𝐸) = 0 for 𝑖 = 1, . . . , 𝑡, where 𝐸 is the
identity of L(𝑈) and is automatically contained in 𝑀 . Therefore, 𝑔 ∈ 𝑀 . This
proves (3.3).

Further, since the space 𝑊 is finite-dimensional, there is an integer ℎ ∈ ℤ+ such
that

(3.5) 𝑊 ⊆ 𝜉(
⊕

𝑖⩽ℎ(𝑈
⊕𝑑)⊗𝑖).

Define 𝑊 ′ := 𝜉−1(𝑊 ) ∩ (
⊕

𝑖⩽ℎ(𝑈
⊕𝑑)⊗𝑖). The L(𝑈)-equivariance of 𝜉 implies

(3.6) L(𝑈)𝑊 ′ = L(𝑈)𝑊 .

Fix a basis {𝑝1, 𝑝2} of the space 𝑃 . There exists an embedding of L(𝑈)-modules

(3.7) 𝜄 : T(𝑈⊕𝑑) ↪→ T(⟨𝑝1⟩ ⊕ 𝑈).

Indeed, let 𝑈𝑖 be the 𝑖th summand of 𝑈⊕𝑑. Consider an arbitrary basis {𝑓𝑖𝑗 ∣ 𝑗 =
1, . . . , 𝑑} of 𝑈𝑖 and define an embedding as follows:

(3.8) 𝜄(𝑓𝑖1𝑗1 ⊗ . . .⊗ 𝑓𝑖𝑡𝑗𝑡) := 𝑝⊗𝑖1
1 ⊗ 𝑓 ′𝑖1𝑗1 ⊗ . . .⊗ 𝑝⊗𝑖𝑡

1 ⊗ 𝑓 ′𝑖𝑡𝑗𝑡 ,

where 𝑓 ′𝑖𝑗 is the image of 𝑓𝑖𝑗 under the identity isomorphism 𝑈𝑖 → 𝑈 . It is easy

to check that the embedding 𝜄 : T(𝑈⊕𝑑) → T(⟨𝑝1⟩ ⊕ 𝑈) defined on the basis of
T(𝑈⊕𝑑)+ by formula (3.8) and sending 1 to 1 is the one required.

Now we may consider a space 𝑊 ′′ := 𝜄(𝑊 ′),

(3.9) L(𝑈)𝑊 ′′ = L(𝑈)𝑊 ′ .

Since 𝑊 ′′ is finite-dimensional, there exists an integer 𝑏 ∈ ℕ such that

(3.10) 𝑊 ′′ ⊆ ⊕
𝑖⩽𝑏(⟨𝑝1⟩ ⊕ 𝑈)⊗𝑖.

Take 𝑟 ⩾ 𝑏 such that 𝑟 > 1 and consider a linear mapping

(3.11) 𝜄𝑟 :
⊕

𝑖⩽𝑏(⟨𝑝1⟩⊕𝑈)⊗𝑖 → (𝑃 ⊕𝑈)⊗𝑟, 𝑓𝑖 �→ 𝑝
⊗(𝑟−𝑖)
2 ⊗ 𝑓𝑖, 𝑓𝑖 ∈ (⟨𝑝1⟩ ⊕𝑈)⊗𝑖.

Obviously, 𝜄𝑟 is an embedding of L(𝑈)-modules. Define 𝑆 = 𝜄𝑟(𝑊
′′). Then

(3.12) L(𝑈)𝑆 = L(𝑈)𝑊 ′′ .

Now the claim follows from equations (3.3), (3.6), (3.9) and (3.12). □

Proof of Theorem 1.1. Let𝑀 be an arbitrary affine algebraic monoid, 𝑈, 𝑏, 𝑟, 𝑃, 𝑆
be as in Proposition 3.1. Fix some set 𝛾 ∈ (K ∖ {0, 1})6 such that 𝛾𝑖 ∕= 𝛾𝑗 for
𝑖 ∕= 𝑗, and consider the algebra 𝐷(𝑃,𝑈, 𝑆, 𝛾). It follows from Proposition 3.1 and
Proposition 2.3 that End(𝐷(𝑃,𝑈, 𝑆, 𝛾)) ∼= 𝑀 ⊔ {𝔷}.
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