Toeplitz and Hankel operators and Dixmier traces on the unit ball of $\mathbb C^n$
HTML articles powered by AMS MathViewer
- by Miroslav Engliš, Kunyu Guo and Genkai Zhang
- Proc. Amer. Math. Soc. 137 (2009), 3669-3678
- DOI: https://doi.org/10.1090/S0002-9939-09-09331-9
- Published electronically: June 16, 2009
- PDF | Request permission
Abstract:
We compute the Dixmier trace of pseudo-Toeplitz operators on the Fock space. As an application we find a formula for the Dixmier trace of the product of commutators of Toeplitz operators on the Hardy and weighted Bergman spaces on the unit ball of $\mathbb C^d$. This generalizes an earlier work of Helton-Howe for the usual trace of the anti-symmetrization of Toeplitz operators.References
- J. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), no. 6, 989–1053. MR 970119, DOI 10.2307/2374685
- Jonathan Arazy, Stephen D. Fisher, Svante Janson, and Jaak Peetre, An identity for reproducing kernels in a planar domain and Hilbert-Schmidt Hankel operators, J. Reine Angew. Math. 406 (1990), 179–199. MR 1048240
- Jonathan Arazy, Stephen D. Fisher, Svante Janson, and Jaak Peetre, Membership of Hankel operators on the ball in unitary ideals, J. London Math. Soc. (2) 43 (1991), no. 3, 485–508. MR 1113389, DOI 10.1112/jlms/s2-43.3.485
- Paolo Boggiatto and Fabio Nicola, Non-commutative residues for anisotropic pseudo-differential operators in $\Bbb R^n$, J. Funct. Anal. 203 (2003), no. 2, 305–320. MR 2003350, DOI 10.1016/S0022-1236(03)00194-0
- Mark Feldman and Richard Rochberg, Singular value estimates for commutators and Hankel operators on the unit ball and the Heisenberg group, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 121–159. MR 1044786, DOI 10.1007/978-94-009-1942-6_{9}
- Victor Guillemin, Toeplitz operators in $n$ dimensions, Integral Equations Operator Theory 7 (1984), no. 2, 145–205. MR 750217, DOI 10.1007/BF01200373
- A. Connes, The action functional in noncommutative geometry, Comm. Math. Phys. 117 (1988), no. 4, 673–683. MR 953826
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- J. William Helton and Roger E. Howe, Traces of commutators of integral operators, Acta Math. 135 (1975), no. 3-4, 271–305. MR 438188, DOI 10.1007/BF02392022
- Roger Howe, Quantum mechanics and partial differential equations, J. Functional Analysis 38 (1980), no. 2, 188–254. MR 587908, DOI 10.1016/0022-1236(80)90064-6
- Svante Janson, Jaak Peetre, and Richard Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoamericana 3 (1987), no. 1, 61–138. MR 1008445, DOI 10.4171/RMI/46
- Svante Janson, Harald Upmeier, and Robert Wallstén, Schatten-norm identities for Hankel operators, J. Funct. Anal. 119 (1994), no. 1, 210–216. MR 1255278, DOI 10.1006/jfan.1994.1008
- Jaak Peetre, On the $S_4$-norm of a Hankel form, Rev. Mat. Iberoamericana 8 (1992), no. 1, 121–130. MR 1178451, DOI 10.4171/RMI/119
- Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR 1949210, DOI 10.1007/978-0-387-21681-2
- Raphaël Ponge, Noncommutative residue invariants for CR and contact manifolds, J. Reine Angew. Math. 614 (2008), 117–151. MR 2376284, DOI 10.1515/CRELLE.2008.004
- Richard Rochberg, Trace ideal criteria for Hankel operators and commutators, Indiana Univ. Math. J. 31 (1982), no. 6, 913–925. MR 674875, DOI 10.1512/iumj.1982.31.31062
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Ke He Zhu, Schatten class Hankel operators on the Bergman space of the unit ball, Amer. J. Math. 113 (1991), no. 1, 147–167. MR 1087805, DOI 10.2307/2374825
Bibliographic Information
- Miroslav Engliš
- Affiliation: Mathematics Institute AS ČR, Žitná 25, 11567 Prague 1, Czech Republic – and – Mathematics Institute, Silesian University, Na Rybníčku 1, 74601 Opava, Czech Republic
- Email: englis@math.cas.cz
- Kunyu Guo
- Affiliation: Department of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China
- Email: kyguo@fudan.edu.cn
- Genkai Zhang
- Affiliation: Department of Mathematics, Chalmers University of Technology and Göteborg University, Göteborg, Sweden
- Email: genkai@chalmers.se
- Received by editor(s): February 19, 2007
- Received by editor(s) in revised form: July 12, 2007
- Published electronically: June 16, 2009
- Additional Notes: The research of the first author was supported by GA ČR grant No. 201/06/128 and AV ČR Institutional Research Plan No. AV0Z10190503, of the second author by NSFC(10525106) and NKBRPC(2006CB805905), and of the third author by the Swedish Science Council (VR) and SIDA-Swedish Research Links
- Communicated by: Marius Junge
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 3669-3678
- MSC (2000): Primary 32A36; Secondary 47B35, 47B06
- DOI: https://doi.org/10.1090/S0002-9939-09-09331-9
- MathSciNet review: 2529873