A Katznelson-Tzafriri type theorem in Hilbert spaces
HTML articles powered by AMS MathViewer
- by Zoltán Léka
- Proc. Amer. Math. Soc. 137 (2009), 3763-3768
- DOI: https://doi.org/10.1090/S0002-9939-09-09939-0
- Published electronically: May 27, 2009
- PDF | Request permission
Abstract:
Our aim is to characterize, via an ergodic condition, the norm convergence $\lim _{n \rightarrow \infty } \|T^nQ\| = 0$ when $T$ is a power-bounded operator on a Hilbert space and $Q$ commutes with $T.$ We shall also prove that if $f \in A^+(\mathbb {T})$ and $Q = f(T),$ the given condition is equivalent to the vanishing of $f$ on the peripheral spectrum of $T.$References
- C. J. K. Batty, Asymptotic behaviour of semigroups of operators, Functional analysis and operator theory (Warsaw, 1992) Banach Center Publ., vol. 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 35–52. MR 1285599
- Charles J. K. Batty and Stephen B. Yeates, Extensions of semigroups of operators, J. Operator Theory 46 (2001), no. 1, 139–157. MR 1862183
- Charles J. K. Batty and Vũ Quốc Phóng, Stability of strongly continuous representations of abelian semigroups, Math. Z. 209 (1992), no. 1, 75–88. MR 1143215, DOI 10.1007/BF02570822
- Hari Bercovici, On the iterates of a completely nonunitary contraction, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., vol. 48, Birkhäuser, Basel, 1990, pp. 185–188. MR 1207397
- Hari Bercovici, Commuting power-bounded operators, Acta Sci. Math. (Szeged) 57 (1993), no. 1-4, 55–64. MR 1243268
- Ralph Chill and Yuri Tomilov, Stability of operator semigroups: ideas and results, Perspectives in operator theory, Banach Center Publ., vol. 75, Polish Acad. Sci. Inst. Math., Warsaw, 2007, pp. 71–109. MR 2336713, DOI 10.4064/bc75-0-6
- R. G. Douglas, On extending commutative semigroups of isometries, Bull. London Math. Soc. 1 (1969), 157–159. MR 246153, DOI 10.1112/blms/1.2.157
- J. Esterle, Quasimultipliers, representations of $H^{\infty }$, and the closed ideal problem for commutative Banach algebras, Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981) Lecture Notes in Math., vol. 975, Springer, Berlin, 1983, pp. 66–162. MR 697579, DOI 10.1007/BFb0064548
- J. Esterle, E. Strouse, and F. Zouakia, Theorems of Katznelson-Tzafriri type for contractions, J. Funct. Anal. 94 (1990), no. 2, 273–287. MR 1081645, DOI 10.1016/0022-1236(90)90014-C
- J. Esterle, E. Strouse, and F. Zouakia, Stabilité asymptotique de certains semi-groupes d’opérateurs et idéaux primaires de $L^1(\textbf {R}^+)$, J. Operator Theory 28 (1992), no. 2, 203–227 (French). MR 1273043
- Stefan Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104. MR 552464, DOI 10.1515/crll.1980.313.72
- Takasi Itô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. Ser. I 14 (1958), 1–15. MR 0107177
- Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328. MR 859138, DOI 10.1016/0022-1236(86)90101-1
- László Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J. 38 (1989), no. 1, 173–188. MR 982576, DOI 10.1512/iumj.1989.38.38008
- László Kérchy and Jan van Neerven, Polynomially bounded operators whose spectrum on the unit circle has measure zero, Acta Sci. Math. (Szeged) 63 (1997), no. 3-4, 551–562. MR 1480498
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- H. S. Mustafayev, The Banach algebra generated by a contraction, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2677–2683. MR 2213747, DOI 10.1090/S0002-9939-06-08302-X
- H. S. Mustafayev, The behavior of the radical of the algebras generated by a semigroup of operators on Hilbert space, J. Operator Theory 57 (2007), no. 1, 19–34. MR 2301935
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
- Vũ Quốc Phóng, A short proof of the Y. Katznelson’s and L. Tzafriri’s theorem, Proc. Amer. Math. Soc. 115 (1992), no. 4, 1023–1024. MR 1087468, DOI 10.1090/S0002-9939-1992-1087468-0
- Vũ Quốc Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), no. 1, 74–84. MR 1144683, DOI 10.1016/0022-1236(92)90135-6
- Jaroslav Zemánek, On the Gel′fand-Hille theorems, Functional analysis and operator theory (Warsaw, 1992) Banach Center Publ., vol. 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 369–385. MR 1285622
Bibliographic Information
- Zoltán Léka
- Affiliation: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary
- Email: lzoli@math.u-szeged.hu
- Received by editor(s): September 2, 2008
- Received by editor(s) in revised form: February 20, 2009
- Published electronically: May 27, 2009
- Additional Notes: This study was partially supported by Hungarian NSRF (OTKA) grant No. T 49846 and by the Marie Curie “Transfer of Knowledge” programme, project TODEQ
- Communicated by: Nigel J. Kalton
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 3763-3768
- MSC (2000): Primary 47A35, 46B08; Secondary 46M07, 47B99
- DOI: https://doi.org/10.1090/S0002-9939-09-09939-0
- MathSciNet review: 2529885