The uniform separation property and Banach-Stone theorems for lattice-valued Lipschitz functions
HTML articles powered by AMS MathViewer
- by A. Jiménez-Vargas, A. Morales Campoy and Moisés Villegas-Vallecillos
- Proc. Amer. Math. Soc. 137 (2009), 3769-3777
- DOI: https://doi.org/10.1090/S0002-9939-09-09941-9
- Published electronically: June 1, 2009
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 138 (2010), 1535-1535.
Abstract:
Using the uniform separation property of N. Weaver and the uniform joint property, we present in this paper a Lipschitz version of a Banach–Stone-type theorem for lattice-valued continuous functions obtained recently by J. X. Chen, Z. L. Chen and N.-C. Wong.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan and S. Önal, Memorandum on multiplicative bijections and order, available at http://kolmogorov.unex.es/~fcabello.
- F. Cabello Sánchez and J. Cabello Sánchez, Nonlinear isomorphisms of lattices of Lipschitz functions, available at http://kolmogorov.unex.es/~fcabello.
- J. Cao, I. Reilly, and H. Xiong, A lattice-valued Banach-Stone theorem, Acta Math. Hungar. 98 (2003), no. 1-2, 103–110. MR 1958470, DOI 10.1023/A:1022861506272
- Jin Xi Chen, Zi Li Chen, and Ngai-Ching Wong, A Banach-Stone theorem for Riesz isomorphisms of Banach lattices, Proc. Amer. Math. Soc. 136 (2008), no. 11, 3869–3874. MR 2425726, DOI 10.1090/S0002-9939-08-09582-8
- Z. Ercan and S. Önal, Banach-Stone theorem for Banach lattice valued continuous functions, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2827–2829. MR 2317958, DOI 10.1090/S0002-9939-07-08788-6
- Z. Ercan and S. Önal, The Banach-Stone theorem revisited, Topology Appl. 155 (2008), no. 16, 1800–1803. MR 2445303, DOI 10.1016/j.topol.2008.05.018
- M. I. Garrido and J. A. Jaramillo, Homomorphisms on function lattices, Monatsh. Math. 141 (2004), no. 2, 127–146. MR 2037989, DOI 10.1007/s00605-002-0011-4
- M. Isabel Garrido and Jesús A. Jaramillo, Lipschitz-type functions on metric spaces, J. Math. Anal. Appl. 340 (2008), no. 1, 282–290. MR 2376153, DOI 10.1016/j.jmaa.2007.08.028
- Graham Jameson, Ordered linear spaces, Lecture Notes in Mathematics, Vol. 141, Springer-Verlag, Berlin-New York, 1970. MR 0438077
- A. Jiménez-Vargas and Moisés Villegas-Vallecillos, Order isomorphisms of little Lipschitz algebras, Houston J. Math. 34 (2008), no. 4, 1185–1195. MR 2465374, DOI 10.1016/j.eswa.2007.05.039
- Xinhe Miao, Jiling Cao, and Hongyun Xiong, Banach-Stone theorems and Riesz algebras, J. Math. Anal. Appl. 313 (2006), no. 1, 177–183. MR 2178729, DOI 10.1016/j.jmaa.2005.08.050
- Nik Weaver, Lattices of Lipschitz functions, Pacific J. Math. 164 (1994), no. 1, 179–193. MR 1267506
- Nik Weaver, Order completeness in Lipschitz algebras, J. Funct. Anal. 130 (1995), no. 1, 118–130. MR 1331979, DOI 10.1006/jfan.1995.1065
- Nik Weaver, Subalgebras of little Lipschitz algebras, Pacific J. Math. 173 (1996), no. 1, 283–293. MR 1387803
- Nik Weaver, Quotients of little Lipschitz algebras, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2643–2648. MR 1402889, DOI 10.1090/S0002-9939-97-03985-3
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645, DOI 10.1142/4100
Bibliographic Information
- A. Jiménez-Vargas
- Affiliation: Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, Spain
- Email: ajimenez@ual.es
- A. Morales Campoy
- Affiliation: Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, Spain
- Email: amorales@ual.es
- Moisés Villegas-Vallecillos
- Affiliation: Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, Spain
- Email: mvv042@alboran.ual.es
- Received by editor(s): February 12, 2009
- Received by editor(s) in revised form: February 20, 2009
- Published electronically: June 1, 2009
- Additional Notes: This research was partially supported by Junta de Andalucía grants FQM-1438 and FQM-3737, and MCYT projects MTM2006-4837 and MTM2007-65959.
The third author was supported in part by Beca Plan Propio Universidad de Almería - Communicated by: Nigel J. Kalton
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 3769-3777
- MSC (2000): Primary 46E40, 46E05
- DOI: https://doi.org/10.1090/S0002-9939-09-09941-9
- MathSciNet review: 2529886