Common hypercyclic functions for multiples of convolution and non-convolution operators
HTML articles powered by AMS MathViewer
- by Luis Bernal-González
- Proc. Amer. Math. Soc. 137 (2009), 3787-3795
- DOI: https://doi.org/10.1090/S0002-9939-09-09943-2
- Published electronically: June 5, 2009
- PDF | Request permission
Abstract:
We prove the existence of a residual set of entire functions, all of whose members are hypercyclic for every non-zero scalar multiple of $T$, where $T$ is the differential operator associated to an entire function of order less than $1/2$. The same result holds if $T$ is a finite-order linear differential operator with non-constant coefficients.References
- Evgeny Abakumov and Julia Gordon, Common hypercyclic vectors for multiples of backward shift, J. Funct. Anal. 200 (2003), no. 2, 494–504. MR 1979020, DOI 10.1016/S0022-1236(02)00030-7
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
- Shamim I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), no. 2, 374–383. MR 1319961, DOI 10.1006/jfan.1995.1036
- R. Aron, J. Bès, F. León, and A. Peris, Operators with common hypercyclic subspaces, J. Operator Theory 54 (2005), no. 2, 251–260. MR 2186352
- Frédéric Bayart, Common hypercyclic vectors for composition operators, J. Operator Theory 52 (2004), no. 2, 353–370. MR 2119275
- Frédéric Bayart, Common hypercyclic subspaces, Integral Equations Operator Theory 53 (2005), no. 4, 467–476. MR 2187432, DOI 10.1007/s00020-004-1316-6
- Frédéric Bayart, Topological and algebraic genericity of divergence and universality, Studia Math. 167 (2005), no. 2, 161–181. MR 2134382, DOI 10.4064/sm167-2-4
- F. Bayart and É. Matheron, How to get common universal vectors, Indiana Univ. Math. J. 56 (2007), no. 2, 553–580. MR 2317538, DOI 10.1512/iumj.2007.56.2863
- Carlos A. Berenstein and Roger Gay, Complex analysis and special topics in harmonic analysis, Springer-Verlag, New York, 1995. MR 1344448, DOI 10.1007/978-1-4613-8445-8
- G.D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473–475.
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- Kit C. Chan and Rebecca Sanders, Common supercyclic vectors for a path of operators, J. Math. Anal. Appl. 337 (2008), no. 1, 646–658. MR 2356099, DOI 10.1016/j.jmaa.2007.04.023
- K. Chan and R. Sanders, Two criteria for a path of operators to have common hypercyclic vectors, J. Operator Theory, 61 (2009), 191–223.
- G. Costakis, Common Cesàro hypercyclic vectors, preprint.
- George Costakis and Panagiotis Mavroudis, Common hypercyclic entire functions for multiples of differential operators, Colloq. Math. 111 (2008), no. 2, 199–203. MR 2365797, DOI 10.4064/cm111-2-3
- George Costakis and Martin Sambarino, Genericity of wild holomorphic functions and common hypercyclic vectors, Adv. Math. 182 (2004), no. 2, 278–306. MR 2032030, DOI 10.1016/S0001-8708(03)00079-3
- J. Delsarte and J. L. Lions, Transmutations d’opérateurs différentiels dans le domaine complexe, Comment. Math. Helv. 32 (1957), 113–128 (French). MR 91386, DOI 10.1007/BF02564574
- Leon Ehrenpreis, Mean periodic functions. I. Varieties whose annihilator ideals are principal, Amer. J. Math. 77 (1955), 293–328. MR 70047, DOI 10.2307/2372533
- D. Gaĭer, Lektsii po teorii approksimatsii v kompleksnoĭ oblasti, “Mir”, Moscow, 1986 (Russian). Translated from the German by L. M. Kartashov; Translation edited and with a preface by V. I. Belyĭ and P. M. Tamrazov. MR 894919
- Eva A. Gallardo-Gutiérrez and Jonathan R. Partington, Common hypercyclic vectors for families of operators, Proc. Amer. Math. Soc. 136 (2008), no. 1, 119–126. MR 2350396, DOI 10.1090/S0002-9939-07-09053-3
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- K.-G. Grosse-Erdmann, Recent developments in hypercyclicity, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), no. 2, 273–286 (English, with English and Spanish summaries). MR 2068180
- Fernando León-Saavedra and Vladimír Müller, Rotations of hypercyclic and supercyclic operators, Integral Equations Operator Theory 50 (2004), no. 3, 385–391. MR 2104261, DOI 10.1007/s00020-003-1299-8
- G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 (1952), 72–87 (English, with Hebrew summary). MR 53231, DOI 10.1007/BF02786968
- Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990
- A. Peris, Common hypercyclic vectors for backward shifts, Operator theory seminar, Michigan State University, 2000-2001.
- Jochen Wengenroth, Hypercyclic operators on non-locally convex spaces, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1759–1761. MR 1955262, DOI 10.1090/S0002-9939-03-07003-5
Bibliographic Information
- Luis Bernal-González
- Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, Avda. Reina Mercedes, Sevilla-41080, Spain
- Email: lbernal@us.es
- Received by editor(s): July 7, 2008
- Received by editor(s) in revised form: February 23, 2009
- Published electronically: June 5, 2009
- Additional Notes: The author has been partially supported by the Plan Andaluz de Investigación de la Junta de Andalucía FQM-127, by MEC Grant MTM2006-13997-C02-01 and by MEC Acción Especial MTM2006-26627-E
- Communicated by: Nigel J. Kalton
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 3787-3795
- MSC (2000): Primary 47A16; Secondary 30E10, 47B33
- DOI: https://doi.org/10.1090/S0002-9939-09-09943-2
- MathSciNet review: 2529888
Dedicated: Dedicated to the memory of Professor Antonio Aizpuru, who died in March 2008