Generalized dimension distortion under planar Sobolev homeomorphisms
HTML articles powered by AMS MathViewer
- by Pekka Koskela, Aleksandra Zapadinskaya and Thomas Zürcher
- Proc. Amer. Math. Soc. 137 (2009), 3815-3821
- DOI: https://doi.org/10.1090/S0002-9939-09-09948-1
- Published electronically: June 9, 2009
- PDF | Request permission
Abstract:
We prove essentially sharp dimension distortion estimates for planar Sobolev-Orlicz homeomorphisms.References
- Kari Astala, Tadeusz Iwaniec, Pekka Koskela, and Gaven Martin, Mappings of BMO-bounded distortion, Math. Ann. 317 (2000), no. 4, 703–726. MR 1777116, DOI 10.1007/PL00004420
- Guy David, Solutions de l’équation de Beltrami avec $\|\mu \|_\infty =1$, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 25–70 (French). MR 975566, DOI 10.5186/aasfm.1988.1303
- Daniel Faraco, Pekka Koskela, and Xiao Zhong, Mappings of finite distortion: the degree of regularity, Adv. Math. 190 (2005), no. 2, 300–318. MR 2102659, DOI 10.1016/j.aim.2003.12.009
- F. W. Gehring and J. Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. (2) 6 (1973), 504–512. MR 324028, DOI 10.1112/jlms/s2-6.3.504
- Stanislav Hencl, Pekka Koskela, and Jani Onninen, Homeomorphisms of bounded variation, Arch. Ration. Mech. Anal. 186 (2007), no. 3, 351–360. MR 2350361, DOI 10.1007/s00205-007-0056-6
- David A. Herron and Pekka Koskela, Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math. 47 (2003), no. 4, 1243–1259. MR 2037001
- Tadeusz Iwaniec, Pekka Koskela, and Gaven Martin, Mappings of BMO-distortion and Beltrami-type operators, J. Anal. Math. 88 (2002), 337–381. Dedicated to the memory of Tom Wolff. MR 1979776, DOI 10.1007/BF02786581
- T. Iwaniec, P. Koskela, G. Martin, and C. Sbordone, Mappings of finite distortion: $L^n\log ^\chi L$-integrability, J. London Math. Soc. (2) 67 (2003), no. 1, 123–136. MR 1942415, DOI 10.1112/S0024610702003769
- Tadeusz Iwaniec and Anna Verde, A study of Jacobians in Hardy-Orlicz spaces, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 3, 539–570. MR 1693625, DOI 10.1017/S0308210500021508
- Robert Kaufman, Sobolev spaces, dimension, and random series, Proc. Amer. Math. Soc. 128 (2000), no. 2, 427–431. MR 1670383, DOI 10.1090/S0002-9939-99-05383-6
- Janne Kauhanen, Pekka Koskela, and Jan Malý, Mappings of finite distortion: condition N, Michigan Math. J. 49 (2001), no. 1, 169–181. MR 1827080, DOI 10.1307/mmj/1008719040
- P. Koskela, A. Zapadinskaya, and T. Zürcher, Mappings of finite distortion: generalized Hausdorff dimension distortion, preprint.
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- Jan Malý and Olli Martio, Lusin’s condition (N) and mappings of the class $W^{1,n}$, J. Reine Angew. Math. 458 (1995), 19–36. MR 1310951, DOI 10.1515/crll.1995.458.19
- O. Martio and William P. Ziemer, Lusin’s condition (N) and mappings with nonnegative Jacobians, Michigan Math. J. 39 (1992), no. 3, 495–508. MR 1182504, DOI 10.1307/mmj/1029004603
- S. P. Ponomarev, An example of an $\textrm {ACTL}^{p}$ homeomorphism that is not absolutely continuous in the sense of Banach, Dokl. Akad. Nauk SSSR 201 (1971), 1053–1054 (Russian). MR 0293024
- S. P. Ponomarëv, On the $N$-property of homeomorphisms of the class $W^1_p$, Sibirsk. Mat. Zh. 28 (1987), no. 2, 140–148, 226 (Russian). MR 890732
- Ju. G. Rešetnjak, Certain geometric properties of functions and mappings with generalized derivatives, Sibirsk. Mat. Ž. 7 (1966), 886–919 (Russian). MR 0203013
- Saeed Zakeri, David maps and Hausdorff dimension, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 121–138. MR 2041702
Bibliographic Information
- Pekka Koskela
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
- MR Author ID: 289254
- Email: pkoskela@maths.jyu.fi
- Aleksandra Zapadinskaya
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
- Email: alzapadi@cc.jyu.fi
- Thomas Zürcher
- Affiliation: Mathematical Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Address at time of publication: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
- Email: thomas.zuercher@math.unibe.ch, thomas.t.zurcher@jyu.fi
- Received by editor(s): October 17, 2008
- Received by editor(s) in revised form: February 26, 2009
- Published electronically: June 9, 2009
- Additional Notes: The first author was supported partially by the Academy of Finland, grant No. 120972
The second author was supported partially by the Academy of Finland, grant No. 120972
The third author was supported by the Swiss National Science Foundation and GALA - Communicated by: Mario Bonk
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 3815-3821
- MSC (2000): Primary 30C65
- DOI: https://doi.org/10.1090/S0002-9939-09-09948-1
- MathSciNet review: 2529891