A stably elementary homotopy
Author:
Ravi A. Rao
Journal:
Proc. Amer. Math. Soc. 137 (2009), 3637-3645
MSC (2000):
Primary 13C10, 19D45, 19G12, 55Q55
DOI:
https://doi.org/10.1090/S0002-9939-09-09949-3
Published electronically:
June 16, 2009
MathSciNet review:
2529870
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: If is an affine algebra of dimension
over a perfect C
field and
is a stably elementary matrix, we show that there is a stably elementary matrix
with
and
.
- 1. Anuradha S. Garge and Ravi A. Rao, A nice group structure on the orbit space of unimodular rows, 𝐾-Theory 38 (2008), no. 2, 113–133. MR 2366558, https://doi.org/10.1007/s10977-007-9011-4
- 2. Selby Jose and Ravi A. Rao, A structure theorem for the elementary unimodular vector group, Trans. Amer. Math. Soc. 358 (2006), no. 7, 3097–3112. MR 2216260, https://doi.org/10.1090/S0002-9947-05-03794-3
- 3. Wilberd van der Kallen, A group structure on certain orbit sets of unimodular rows, J. Algebra 82 (1983), no. 2, 363–397. MR 704762, https://doi.org/10.1016/0021-8693(83)90158-8
- 4. Hartmut Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65 (1981/82), no. 2, 319–323. MR 641133, https://doi.org/10.1007/BF01389017
- 5. N. Mohan Kumar and M. Pavaman Murthy, Algebraic cycles and vector bundles over affine three-folds, Ann. of Math. (2) 116 (1982), no. 3, 579–591. MR 678482, https://doi.org/10.2307/2007024
- 6. Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171. MR 427303, https://doi.org/10.1007/BF01390008
- 7. Ravi A. Rao, An elementary transformation of a special unimodular vector to its top coefficient vector, Proc. Amer. Math. Soc. 93 (1985), no. 1, 21–24. MR 766519, https://doi.org/10.1090/S0002-9939-1985-0766519-0
- 8. Ravi A. Rao and Wilberd van der Kallen, Improved stability for 𝑆𝐾₁ and 𝑊𝑀𝑆_{𝑑} of a non-singular affine algebra, Astérisque 226 (1994), 11, 411–420. 𝐾-theory (Strasbourg, 1992). MR 1317126
- 9. Moshe Roitman, On unimodular rows, Proc. Amer. Math. Soc. 95 (1985), no. 2, 184–188. MR 801320, https://doi.org/10.1090/S0002-9939-1985-0801320-0
- 10. Moshe Roitman, On stably extended projective modules over polynomial rings, Proc. Amer. Math. Soc. 97 (1986), no. 4, 585–589. MR 845969, https://doi.org/10.1090/S0002-9939-1986-0845969-9
- 11. Jean-Pierre Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin-New York, 1973. Cours au Collège de France, Paris, 1962–1963; Avec des textes inédits de J. Tate et de Jean-Louis Verdier; Quatrième édition. MR 0404227
- 12. A. A. Suslin, Stably free modules, Mat. Sb. (N.S.) 102(144) (1977), no. 4, 537–550, 632 (Russian). MR 0441949
- 13. A.A. SUSLIN, On the structure of the special linear group over polynomial rings, Math. USSR Izv. 11, 221-238, 1977.
- 14. A. A. Suslin, Cancellation for affine varieties, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 114 (1982), 187–195, 222 (Russian). Modules and algebraic groups. MR 669571
- 15. A. A. Suslin, Mennicke symbols and their applications in the 𝐾-theory of fields, Algebraic 𝐾-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp. 334–356. MR 689382
- 16. R.G. SWAN, Some stably free modules which are not self dual. See unpublished papers on homepage of R.G. Swan at http://www.math.uchicago.edu/.
- 17. Richard G. Swan, A cancellation theorem for projective modules in the metastable range, Invent. Math. 27 (1974), 23–43. MR 376681, https://doi.org/10.1007/BF01389963
- 18. L. N. Vaseršteĭn and A. A. Suslin, Serre’s problem on projective modules over polynomial rings, and algebraic 𝐾-theory, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 5, 993–1054, 1199 (Russian). MR 0447245
- 19. Ton Vorst, The general linear group of polynomial rings over regular rings, Comm. Algebra 9 (1981), no. 5, 499–509. MR 606650, https://doi.org/10.1080/00927878108822596
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13C10, 19D45, 19G12, 55Q55
Retrieve articles in all journals with MSC (2000): 13C10, 19D45, 19G12, 55Q55
Additional Information
Ravi A. Rao
Affiliation:
Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Navy Nagar, Mumbai 400 005, India
Email:
ravi@math.tifr.res.in
DOI:
https://doi.org/10.1090/S0002-9939-09-09949-3
Keywords:
Unimodular row,
stably elementary matrices,
homotopy
Received by editor(s):
November 12, 2007
Received by editor(s) in revised form:
December 5, 2007, and February 27, 2009
Published electronically:
June 16, 2009
Communicated by:
Martin Lorenz
Article copyright:
© Copyright 2009
American Mathematical Society