A stably elementary homotopy
HTML articles powered by AMS MathViewer
- by Ravi A. Rao
- Proc. Amer. Math. Soc. 137 (2009), 3637-3645
- DOI: https://doi.org/10.1090/S0002-9939-09-09949-3
- Published electronically: June 16, 2009
- PDF | Request permission
Abstract:
If $R$ is an affine algebra of dimension $d$ over a perfect C$_1$ field and $\sigma \in SL_{d + 1}(R)$ is a stably elementary matrix, we show that there is a stably elementary matrix $\sigma (X) \in SL_{d + 1}(R[X])$ with $\sigma (1) = \sigma$ and $\sigma (0) = I_{d + 1}$.References
- Anuradha S. Garge and Ravi A. Rao, A nice group structure on the orbit space of unimodular rows, $K$-Theory 38 (2008), no. 2, 113–133. MR 2366558, DOI 10.1007/s10977-007-9011-4
- Selby Jose and Ravi A. Rao, A structure theorem for the elementary unimodular vector group, Trans. Amer. Math. Soc. 358 (2006), no. 7, 3097–3112. MR 2216260, DOI 10.1090/S0002-9947-05-03794-3
- Wilberd van der Kallen, A group structure on certain orbit sets of unimodular rows, J. Algebra 82 (1983), no. 2, 363–397. MR 704762, DOI 10.1016/0021-8693(83)90158-8
- Hartmut Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65 (1981/82), no. 2, 319–323. MR 641133, DOI 10.1007/BF01389017
- N. Mohan Kumar and M. Pavaman Murthy, Algebraic cycles and vector bundles over affine three-folds, Ann. of Math. (2) 116 (1982), no. 3, 579–591. MR 678482, DOI 10.2307/2007024
- Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171. MR 427303, DOI 10.1007/BF01390008
- Ravi A. Rao, An elementary transformation of a special unimodular vector to its top coefficient vector, Proc. Amer. Math. Soc. 93 (1985), no. 1, 21–24. MR 766519, DOI 10.1090/S0002-9939-1985-0766519-0
- Ravi A. Rao and Wilberd van der Kallen, Improved stability for $SK_1$ and $WMS_d$ of a non-singular affine algebra, Astérisque 226 (1994), 11, 411–420. $K$-theory (Strasbourg, 1992). MR 1317126
- Moshe Roitman, On unimodular rows, Proc. Amer. Math. Soc. 95 (1985), no. 2, 184–188. MR 801320, DOI 10.1090/S0002-9939-1985-0801320-0
- Moshe Roitman, On stably extended projective modules over polynomial rings, Proc. Amer. Math. Soc. 97 (1986), no. 4, 585–589. MR 845969, DOI 10.1090/S0002-9939-1986-0845969-9
- Jean-Pierre Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin-New York, 1973. Cours au Collège de France, Paris, 1962–1963; Avec des textes inédits de J. Tate et de Jean-Louis Verdier; Quatrième édition. MR 0404227
- A. A. Suslin, Stably free modules, Mat. Sb. (N.S.) 102(144) (1977), no. 4, 537–550, 632 (Russian). MR 0441949
- A.A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izv. 11, 221–238, 1977.
- A. A. Suslin, Cancellation for affine varieties, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 114 (1982), 187–195, 222 (Russian). Modules and algebraic groups. MR 669571
- A. A. Suslin, Mennicke symbols and their applications in the $K$-theory of fields, Algebraic $K$-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp. 334–356. MR 689382
- R.G. Swan, Some stably free modules which are not self dual. See unpublished papers on homepage of R.G. Swan at http://www.math.uchicago.edu/.
- Richard G. Swan, A cancellation theorem for projective modules in the metastable range, Invent. Math. 27 (1974), 23–43. MR 376681, DOI 10.1007/BF01389963
- L. N. Vaseršteĭn and A. A. Suslin, Serre’s problem on projective modules over polynomial rings, and algebraic $K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 5, 993–1054, 1199 (Russian). MR 0447245
- Ton Vorst, The general linear group of polynomial rings over regular rings, Comm. Algebra 9 (1981), no. 5, 499–509. MR 606650, DOI 10.1080/00927878108822596
Bibliographic Information
- Ravi A. Rao
- Affiliation: Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Navy Nagar, Mumbai 400 005, India
- Email: ravi@math.tifr.res.in
- Received by editor(s): November 12, 2007
- Received by editor(s) in revised form: December 5, 2007, and February 27, 2009
- Published electronically: June 16, 2009
- Communicated by: Martin Lorenz
- © Copyright 2009 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 3637-3645
- MSC (2000): Primary 13C10, 19D45, 19G12, 55Q55
- DOI: https://doi.org/10.1090/S0002-9939-09-09949-3
- MathSciNet review: 2529870