## Thompson isometries of the space of invertible positive operators

HTML articles powered by AMS MathViewer

- by Lajos Molnár
- Proc. Amer. Math. Soc.
**137**(2009), 3849-3859 - DOI: https://doi.org/10.1090/S0002-9939-09-09963-8
- Published electronically: June 15, 2009
- PDF | Request permission

## Abstract:

We determine the structure of bijective isometries of the set of all invertible positive operators on a Hilbert space equipped with the Thompson metric or the Hilbert projective metric.## References

- T. Ando,
*Topics on operator inequalities*, Hokkaido University, Research Institute of Applied Electricity, Division of Applied Mathematics, Sapporo, 1978. MR**0482378** - T. Ando,
*On the arithmetic-geometric-harmonic-mean inequalities for positive definite matrices*, Linear Algebra Appl.**52/53**(1983), 31–37. MR**709342**, DOI 10.1016/0024-3795(83)80005-6 - E. Andruchow, G. Corach, and D. Stojanoff,
*Geometrical significance of Löwner-Heinz inequality*, Proc. Amer. Math. Soc.**128**(2000), no. 4, 1031–1037. MR**1636922**, DOI 10.1090/S0002-9939-99-05085-6 - Garrett Birkhoff,
*Extensions of Jentzsch’s theorem*, Trans. Amer. Math. Soc.**85**(1957), 219–227. MR**87058**, DOI 10.1090/S0002-9947-1957-0087058-6 - G. Corach, A. Maestripieri, and D. Stojanoff,
*Orbits of positive operators from a differentiable viewpoint*, Positivity**8**(2004), no. 1, 31–48. MR**2053574**, DOI 10.1023/B:POST.0000023202.40428.a8 - Richard J. Fleming and James E. Jamison,
*Isometries on Banach spaces: function spaces*, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 129, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR**1957004** - Richard J. Fleming and James E. Jamison,
*Isometries on Banach spaces. Vol. 2*, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 138, Chapman & Hall/CRC, Boca Raton, FL, 2008. Vector-valued function spaces. MR**2361284** - Jun-ichi Fujii,
*Arithmetico-geometric mean of operators*, Math. Japon.**23**(1978/79), no. 6, 667–669. MR**529901** - Stan Gudder and Gabriel Nagy,
*Sequentially independent effects*, Proc. Amer. Math. Soc.**130**(2002), no. 4, 1125–1130. MR**1873787**, DOI 10.1090/S0002-9939-01-06194-9 - David Hilbert,
*Neue Begründung der Bolyai-Lobatschefskyschen Geometrie*, Math. Ann.**57**(1903), no. 2, 137–150 (German). MR**1511203**, DOI 10.1007/BF01444341 - Fumio Kubo and Tsuyoshi Ando,
*Means of positive linear operators*, Math. Ann.**246**(1979/80), no. 3, 205–224. MR**563399**, DOI 10.1007/BF01371042 - Lajos Molnár,
*Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators*, Studia Math.**173**(2006), no. 1, 39–48. MR**2204461**, DOI 10.4064/sm173-1-3 - L. Molnár,
*Maps preserving the geometric mean of positive operators,*Proc. Amer. Math. Soc.**137**(2009), 1763–1770. - Lajos Molnár and Peter emrl,
*Nonlinear commutativity preserving maps on self-adjoint operators*, Q. J. Math.**56**(2005), no. 4, 589–595. MR**2182468**, DOI 10.1093/qmath/hah058 - Roger D. Nussbaum,
*Hilbert’s projective metric and iterated nonlinear maps*, Mem. Amer. Math. Soc.**75**(1988), no. 391, iv+137. MR**961211**, DOI 10.1090/memo/0391 - Roger D. Nussbaum,
*Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations*, Differential Integral Equations**7**(1994), no. 5-6, 1649–1707. MR**1269677** - Roger D. Nussbaum and Joel E. Cohen,
*The arithmetic-geometric mean and its generalizations for noncommuting linear operators*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**15**(1988), no. 2, 239–308 (1989). MR**1007399** - W. Pusz and S. L. Woronowicz,
*Functional calculus for sesquilinear forms and the purification map*, Rep. Mathematical Phys.**8**(1975), no. 2, 159–170. MR**420302**, DOI 10.1016/0034-4877(75)90061-0 - A. C. Thompson,
*On certain contraction mappings in a partially ordered vector space.*, Proc. Amer. Math. Soc.**14**(1963), 438–443. MR**0149237**, DOI 10.1090/S0002-9939-1963-0149237-7 - Jussi Väisälä,
*A proof of the Mazur-Ulam theorem*, Amer. Math. Monthly**110**(2003), no. 7, 633–635. MR**2001155**, DOI 10.2307/3647749 - Andrew Vogt,
*Maps which preserve equality of distance*, Studia Math.**45**(1973), 43–48. MR**333676**, DOI 10.4064/sm-45-1-43-48

## Bibliographic Information

**Lajos Molnár**- Affiliation: Institute of Mathematics, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
- Email: molnarl@math.klte.hu
- Received by editor(s): December 22, 2008
- Received by editor(s) in revised form: March 3, 2009, and March 7, 2009
- Published electronically: June 15, 2009
- Additional Notes: The author was supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. NK68040.
- Communicated by: Nigel J. Kalton
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 3849-3859 - MSC (2000): Primary 46B28, 47B49
- DOI: https://doi.org/10.1090/S0002-9939-09-09963-8
- MathSciNet review: 2529894