Non-real eigenvalues of singular indefinite Sturm-Liouville operators
HTML articles powered by AMS MathViewer
- by Jussi Behrndt, Qutaibeh Katatbeh and Carsten Trunk
- Proc. Amer. Math. Soc. 137 (2009), 3797-3806
- DOI: https://doi.org/10.1090/S0002-9939-09-09964-X
- Published electronically: July 10, 2009
- PDF | Request permission
Abstract:
We study a Sturm-Liouville expression with indefinite weight of the form $\mathrm {sgn}(-d^2/dx^2+V)$ on $\mathbb {R}$ and the non-real eigenvalues of an associated selfadjoint operator in a Krein space. For real-valued potentials $V$ with a certain behaviour at $\pm \infty$ we prove that there are no real eigenvalues and that the number of non-real eigenvalues (counting multiplicities) coincides with the number of negative eigenvalues of the selfadjoint operator associated to $-d^2/dx^2+V$ in $L^2(\mathbb {R})$. The general results are illustrated with examples.References
- T. Ya. Azizov and I. S. Iokhvidov, Linear operators in spaces with an indefinite metric, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1989. Translated from the Russian by E. R. Dawson; A Wiley-Interscience Publication. MR 1033489
- Richard Beals, Indefinite Sturm-Liouville problems and half-range completeness, J. Differential Equations 56 (1985), no. 3, 391–407. MR 780497, DOI 10.1016/0022-0396(85)90085-3
- Jussi Behrndt, On the spectral theory of singular indefinite Sturm-Liouville operators, J. Math. Anal. Appl. 334 (2007), no. 2, 1439–1449. MR 2338672, DOI 10.1016/j.jmaa.2007.01.048
- Jussi Behrndt, Qutaibeh Katatbeh, and Carsten Trunk, Accumulation of complex eigenvalues of indefinite Sturm-Liouville operators, J. Phys. A 41 (2008), no. 24, 244003, 10. MR 2455801, DOI 10.1088/1751-8113/41/24/244003
- Jussi Behrndt and Carsten Trunk, On the negative squares of indefinite Sturm-Liouville operators, J. Differential Equations 238 (2007), no. 2, 491–519. MR 2341434, DOI 10.1016/j.jde.2007.01.026
- Paul Binding and Patrick J. Browne, Eigencurves for two-parameter selfadjoint ordinary differential equations of even order, J. Differential Equations 79 (1989), no. 2, 289–303. MR 1000691, DOI 10.1016/0022-0396(89)90104-6
- Paul Binding and Hans Volkmer, Eigencurves for two-parameter Sturm-Liouville equations, SIAM Rev. 38 (1996), no. 1, 27–48. MR 1379040, DOI 10.1137/1038002
- János Bognár, Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78, Springer-Verlag, New York-Heidelberg, 1974. MR 0467261
- Branko Ćurgus and Heinz Langer, A Kreĭn space approach to symmetric ordinary differential operators with an indefinite weight function, J. Differential Equations 79 (1989), no. 1, 31–61. MR 997608, DOI 10.1016/0022-0396(89)90112-5
- J. Fleckinger and A. B. Mingarelli, On the eigenvalues of nondefinite elliptic operators, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 219–227. MR 799351, DOI 10.1016/S0304-0208(08)73696-X
- W. Greenberg, C. van der Mee, and V. Protopopescu, Boundary value problems in abstract kinetic theory, Operator Theory: Advances and Applications, vol. 23, Birkhäuser Verlag, Basel, 1987. MR 896904, DOI 10.1007/978-3-0348-5478-8
- Richard L. Hall, Square-well representations for potentials in quantum mechanics, J. Math. Phys. 33 (1992), no. 10, 3472–3476. MR 1182920, DOI 10.1063/1.529896
- H. G. Kaper, C. G. Lekkerkerker, and J. Hejtmanek, Spectral methods in linear transport theory, Operator Theory: Advances and Applications, vol. 5, Birkhäuser Verlag, Basel, 1982. MR 685594
- I. M. Karabash and M. M. Malamud, Indefinite Sturm-Liouville operators $(\textrm {sgn}\,x)(-{d^2\over dx^2}+q(x))$ with finite-zone potentials, Oper. Matrices 1 (2007), no. 3, 301–368. MR 2344680, DOI 10.7153/oam-01-20
- Illya M. Karabash, Aleksey S. Kostenko, and Mark M. Malamud, The similarity problem for $J$-nonnegative Sturm-Liouville operators, J. Differential Equations 246 (2009), no. 3, 964–997. MR 2474582, DOI 10.1016/j.jde.2008.04.021
- I.M. Karabash and C. Trunk, Spectral properties of singular Sturm-Liouville operators with indefinite weight $\mathrm {sgn} x$, to appear in Proc. Roy. Soc. Edinburgh Sect. A.
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Ian Knowles, On the number of $L^{2}$-solutions of second order linear differential equations, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 1-2, 1–13. MR 529564, DOI 10.1017/S0308210500010088
- Ian Knowles, On the location of eigenvalues of second-order linear differential operators, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 1-2, 15–22. MR 529565, DOI 10.1017/S030821050001009X
- Q. Kong, H. Wu, A. Zettl, and M. Möller, Indefinite Sturm-Liouville problems, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 639–652. MR 1983691, DOI 10.1017/S0308210500002584
- Heinz Langer, Spectral functions of definitizable operators in Kreĭn spaces, Functional analysis (Dubrovnik, 1981) Lecture Notes in Math., vol. 948, Springer, Berlin-New York, 1982, pp. 1–46. MR 672791
- B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators, Mathematics and its Applications (Soviet Series), vol. 59, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian. MR 1136037, DOI 10.1007/978-94-011-3748-5
- Hans Volkmer, Sturm-Liouville problems with indefinite weights and Everitt’s inequality, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 5, 1097–1112. MR 1415825, DOI 10.1017/S0308210500023283
- Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320, DOI 10.1007/BFb0077960
- Joachim Weidmann, Lineare Operatoren in Hilberträumen. Teil II, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 2003 (German). Anwendungen. [Applications]. MR 2382320, DOI 10.1007/978-3-322-80095-4
- Anton Zettl, Sturm-Liouville theory, Mathematical Surveys and Monographs, vol. 121, American Mathematical Society, Providence, RI, 2005. MR 2170950, DOI 10.1090/surv/121
Bibliographic Information
- Jussi Behrndt
- Affiliation: Department of Mathematics MA 6–4, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany
- MR Author ID: 760074
- Email: behrndt@math.tu-berlin.de
- Qutaibeh Katatbeh
- Affiliation: Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Email: qutaibeh@yahoo.com
- Carsten Trunk
- Affiliation: Department of Mathematics, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany
- MR Author ID: 700912
- Email: carsten.trunk@tu-ilmenau.de
- Received by editor(s): November 14, 2008
- Received by editor(s) in revised form: February 14, 2009, and February 23, 2009
- Published electronically: July 10, 2009
- Communicated by: Chuu-Lian Terng
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 3797-3806
- MSC (2000): Primary 47A10; Secondary 47B50
- DOI: https://doi.org/10.1090/S0002-9939-09-09964-X
- MathSciNet review: 2529889