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A PARAMETRIZED FIXED POINT THEOREM

VESTA COUFAL

(Communicated by Brooke Shipley)

Abstract. We use bordism theory to extend Lefschetz-Nielsen theory to a
family of manifolds and endomorphisms. In particular, we define an invariant,
and prove a parametrized fixed point theorem and its converse.

1. Introduction

In Lefschetz-Nielsen fixed point theory, one considers an endomorphism f : M →
M of a compact manifold M . Briefly, one begins by choosing a base point ∗ and a
base path τ . A Lefschetz-Nielsen invariant, L(f, ∗, τ ), can then be defined using the
fundamental group and a trace construction [3]. Wecken proved the Hopf-Lefschetz
theorem and its converse:

Theorem 1. When M is a compact manifold of dimension greater than two,
L(f, ∗, τ ) = 0 if and only if f is homotopic to a map with no fixed points.

Our goal is to extend Lefschetz-Nielsen theory to a family of manifolds and
endomorphisms, i.e., a smooth fiber bundle p : E → B together with a map f :
E → E such that p = p ◦ f . A simple extension of L(f, ∗, τ ) is not possible because
of the necessity of choosing a base point. In this paper, we avoid this problem and
accomplish our goal by using bordism theory. See [5] and [1].

In Section 2 we give the definitions and results that will be needed in the con-
struction of the invariant and in the proof of the parametrized fixed point theorem.
In Section 3 we define the parametrized version of the Lefschetz-Nielsen invariant,
and in Section 4 we state and prove the parametrized fixed point theorem.

2. General definitions and results

In this section we give the definitions and results that we will need in our con-
struction and proof. These are known but are included for the convenience of the
reader.

Definition 2. The homotopy pullback of the diagram

(1) A
g �� C B

h��

of topological spaces and continuous maps is the space

E(g, h) = {(a, θ, b) ∈ A× CI ×B | θ is a path in C from g(a) to h(b)}.
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The normal bundle of an immersion h : Y → X will be denoted ν(h). For
a smooth manifold X, the stable normal bundle will be denoted ν(X) and the
tangent bundle will be denoted τ (X).

The invariant we construct will be an element of a framed bordism group of the
following type.

Definition 3. Given a space X and a bundle η over X, the n-dimensional framed
bordism group of X with coefficients in η, Ωfr

n (X; η), is the bordism group of n-
dimensional manifolds mapping to X together with stable bundle isomorphisms of
the normal bundle to the pullback of η. More precisely, elements are represented
by triples (Y n, h, h̄), where Y is a closed n-dimensional manifold, h : Y → X,
and h̄ : ν(Y ) → h∗η is a stable bundle isomorphism. Two elements (Y, h, h̄) and
(Y ′, h′, h̄′) are framed bordant if there exists a triple (W,H, H̄) such that W is
a compact (n + 1)-dimensional manifold with ∂W = Y � Y ′, H : W → X is a
map extending h and h′, and H̄ : ν(W ) → H∗η is a stable bundle isomorphism
extending h̄ and h̄′.

Our construction will require the following result of Koźniewski [6, Proposition 6]
concerning B-manifolds. Given a smooth manifold B, a B-manifold X is a manifold
X together with a locally trivial submersion p : X → B. A B-map is a smooth
fiber-preserving map.

Lemma 4. Let X and Y be B-manifolds, let Z be a B-submanifold of Y , and let
g : X → Y be a B-map. Then there is a B-map g1 : X → Y such that g1 is
smoothly B-homotopic to g and g1 is transverse to Z.

Our proof relies heavily on a theorem of Hatcher and Quinn [4, Theorem 4.2]. In
the theorem, EM , EQ and EP are smooth fiber bundles over a compact manifold
R with fibers M , Q and P , respectively. Recall that E(iP , iQ) is the homotopy
pullback.

Theorem 5 (Hatcher and Quinn). Let P p, Qq be closed manifolds, Mm a manifold,
and Rk a compact manifold. Assume that there is a diagram

Q ��

��

M

��

P��

��
EQ

iQ ��

����
��

��
��

EM

��

EP
iP��

����
��

��
��

R

such that iP and iQ are bundle maps which are immersions (embeddings) in each
fiber. Suppose (N, h, h̄) and (iP�∩iQ, i, ī) both represent elements of

Ωfr
p+q+k−m(E(iP , iQ); ν(EP , EM )⊕ ν(EQ, EM )⊕ ν(EM )).

Assume further that m > p+(q+k)/2+1, m > q+(p+k)/2+1 and p, q > 0. Then
iQ is fiber regularly homotopic (isotopic) to a fiber immersion (embedding) i′Q with

iP�∩i′Q = N if and only if [iP�∩iQ] = [N ] is zero in Ωfr
p+q+k−m(E(iP , iQ); ν(EP , EM )

⊕ ν(EQ, EM )⊕ ν(EM )).
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3. The invariant

Let p : En+k → Bn be a smooth fiber bundle with compact fibers and n > 2.
Assume that B is a closed manifold. Let f : E → E be a map such that p ◦ f = p
(i.e., a map of fiber bundles over B).

The fibered product E ×B E is a fiber bundle over B with the fiber over b ∈ B
given by Fb × Fb, where Fb is the fiber of p over b. The dimension of E ×B E is
n + 2k. Let ∆ : E → E ×B E be the diagonal map given by ∆(x) = (x, x); note
that ∆ is a map of fiber bundles over B. Let ∆f : E → E×B E be the map of fiber
bundles given by ∆f (x) = (x, f(x)).

Take the homotopy pullback

L B
f E ��

��

E

∆

��
E

∆f

�� E ×B E

By Lemma 4, ∆f is fiber homotopic to a map Γ : E → E ×B E such that Γ is
transverse to ∆. Take the transverse pullback

Γ�∩∆ ��

��

E

∆

��
E

Γ
�� E ×B E

By universality of the homotopy pullback, there is a map Γ�∩∆ → L B
f E. By

transversality, ν(Γ�∩∆) is stably isomorphic to ν(B). Thus, we get that

[Γ�∩∆] ∈ Ωfr
n (L B

f E; ν(B)).

Definition 6. The Lefschetz invariant is

L(f) = [Γ�∩∆] ∈ Ωfr
n (L B

f E; ν(B)).

It is easy to see that this invariant is well-defined and is an extension of the
Lefschetz-Nielsen invariant L(f, ∗, τ ).

4. The parametrized fixed point theorem

Let f : E → E be defined as in the last section.

Theorem 7 (Parametrized Fixed Point Theorem). If f is fiber homotopic to a
map with no fixed points, then L(f) = 0. If k > n+2 and L(f) = 0, then f is fiber
homotopic to a map with no fixed points.

Proof. Assume f is homotopic to f ′ such that Fix(f ′) = ∅. Then ∆f ′ ∩∆ is zero
bordant, and so ∆f ′�∩∆. By definition, then,

L(f) = [∅] = 0 ∈ Ωfr
n (L B

f E, ν(B)).
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For the converse, assume L(f) = 0. Note that k > n + 2 gives the dimension
requirements, so that we can apply Theorem 5 to the following diagram:

Fb
��

��

Fb × Fb

��

Fb
��

��
E

Γ ��

������������ E ×B E

��

E
∆��

������������

B

which gives a fiber homotopy (over B) of Γ to Γ′ : E → E×B E such that im(Γ′)∩
im(∆) = ∅.

It remains to show that Γ′ is fiber homotopic to a map of the form ∆f ′ such that
im(∆f ′) ∩ im(∆) = ∅. This is done by considering the following diagram:

MapE(E,E ×B E −∆)

��

� � �� MapE(E,E ×B E)

��
MapB(E,E ×B E −∆)

��

� � �� MapB(E,E ×B E)

��
MapB(E,E) MapB(E,E)

By Fadell [2], the columns are fiber bundle sequences. This implies that the upper
square is a homotopy pullback. Thus, since we have ∆f ∈ MapE(E,E ×B E) and
Γ′ ∈ MapB(E,E ×B E − ∆) such that ∆f 
 Γ′ in MapB(E,E ×B E), it follows
that there is a map

Γ′′ ∈ MapE(E,E ×B E −∆)

such that Γ′ 
 Γ′′ in MapB(E,E ×B E −∆). Further,

Γ′′ ∈ MapE(E,E ×B E)

implies that Γ′′ is of the form ∆f ′ for some f ′ : E → E such that f is fiber
homotopic to f ′ and f ′ has no fixed points. �
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