On singularities of primitive cohomology classes
HTML articles powered by AMS MathViewer
- by Mark Andrea A. de Cataldo and Luca Migliorini
- Proc. Amer. Math. Soc. 137 (2009), 3593-3600
- DOI: https://doi.org/10.1090/S0002-9939-09-10014-X
- Published electronically: June 18, 2009
- PDF | Request permission
Abstract:
Green and Griffiths have introduced several notions of singularities associated with normal functions, especially in connection with middle-dimensional primitive Hodge classes. In this paper, by using the more elementary aspects of the Decomposition Theorem, we define global and local singularities associated with primitive middle-dimensional cohomology classes, and by using the Relative Hard Lefschetz Theorem, we show that these singularities detect the global and local triviality of the primitive class.References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- P. Brosnan, H. Fang, Z.O. Nie, G. Pearlstein, “Singularities of admissible normal functions,” preprint, arXiv:0711.0964, 2007.
- Mark Andrea A. de Cataldo and Luca Migliorini, The Hodge theory of algebraic maps, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 693–750 (English, with English and French summaries). MR 2195257, DOI 10.1016/j.ansens.2005.07.001
- M.A. de Cataldo, L. Migliorini, “Hodge-theoretic aspects of the decomposition theorem,” Algebraic Geometry – Seattle 2005, Proc. Sympos. Pure Math., vol. 80, Part 2, Amer. Math. Soc., Providence, RI, 2009, 489–504.
- Fouad El Zein and Steven Zucker, Extendability of normal functions associated to algebraic cycles, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982) Ann. of Math. Stud., vol. 106, Princeton Univ. Press, Princeton, NJ, 1984, pp. 269–288. MR 756857
- Mark Green and Phillip Griffiths, Algebraic cycles and singularities of normal functions, Algebraic cycles and motives. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 343, Cambridge Univ. Press, Cambridge, 2007, pp. 206–263. MR 2385303, DOI 10.1017/CBO9780511721496.006
- Phillip A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125–180. MR 282990
- R. P. Thomas, Nodes and the Hodge conjecture, J. Algebraic Geom. 14 (2005), no. 1, 177–185. MR 2092131, DOI 10.1090/S1056-3911-04-00378-9
Bibliographic Information
- Mark Andrea A. de Cataldo
- Affiliation: Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794
- Luca Migliorini
- Affiliation: Dipartimento di Matematica, Università di Bologna, 40126 Bologna, Italy
- MR Author ID: 248786
- ORCID: 0000-0001-5145-0755
- Received by editor(s): June 11, 2008
- Received by editor(s) in revised form: February 12, 2009
- Published electronically: June 18, 2009
- Communicated by: Ted Chinburg
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 3593-3600
- MSC (2000): Primary 14D06, 14D07
- DOI: https://doi.org/10.1090/S0002-9939-09-10014-X
- MathSciNet review: 2529865