Verification of polytopes by brightness functions
Author:
Rolf Schneider
Journal:
Proc. Amer. Math. Soc. 137 (2009), 3899-3903
MSC (2000):
Primary 52A20; Secondary 52A21
DOI:
https://doi.org/10.1090/S0002-9939-09-10041-2
Published electronically:
June 25, 2009
MathSciNet review:
2529898
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that in the class of origin-centered convex bodies in Euclidean space of dimension at least three, a polytope is uniquely determined by its brigthness function in a suitably chosen, but very small set of directions.
- 1. Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886
- 2. Eric L. Grinberg and Eric Todd Quinto, Analytic continuation of convex bodies and Funk’s characterization of the sphere, Pacific J. Math. 201 (2001), no. 2, 309–322. MR 1875896, https://doi.org/10.2140/pjm.2001.201.309
- 3. Rolf Schneider, On the projections of a convex polytope, Pacific J. Math. 32 (1970), 799–803. MR 267461
- 4. Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521
- 5. Rolf Schneider and Wolfgang Weil, Über die Bestimmung eines konvexen Körpers durch die Inhalte seiner Projektionen, Math. Z. 116 (1970), 338–348 (German). MR 283692, https://doi.org/10.1007/BF01111841
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 52A20, 52A21
Retrieve articles in all journals with MSC (2000): 52A20, 52A21
Additional Information
Rolf Schneider
Affiliation:
Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstrasse 1, D-79104 Freiburg i. Br., Germany
Email:
rolf.schneider@math.uni-freiburg.de
DOI:
https://doi.org/10.1090/S0002-9939-09-10041-2
Keywords:
Convex body,
projection volume,
brightness function,
Aleksandrov's projection theorem,
geometric tomography
Received by editor(s):
October 26, 2008
Published electronically:
June 25, 2009
Communicated by:
Jon G. Wolfson
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.