Verification of polytopes by brightness functions
HTML articles powered by AMS MathViewer
- by Rolf Schneider
- Proc. Amer. Math. Soc. 137 (2009), 3899-3903
- DOI: https://doi.org/10.1090/S0002-9939-09-10041-2
- Published electronically: June 25, 2009
- PDF | Request permission
Abstract:
We show that in the class of origin-centered convex bodies in Euclidean space of dimension at least three, a polytope is uniquely determined by its brigthness function in a suitably chosen, but very small set of directions.References
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- Eric L. Grinberg and Eric Todd Quinto, Analytic continuation of convex bodies and Funk’s characterization of the sphere, Pacific J. Math. 201 (2001), no. 2, 309–322. MR 1875896, DOI 10.2140/pjm.2001.201.309
- Rolf Schneider, On the projections of a convex polytope, Pacific J. Math. 32 (1970), 799–803. MR 267461
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Rolf Schneider and Wolfgang Weil, Über die Bestimmung eines konvexen Körpers durch die Inhalte seiner Projektionen, Math. Z. 116 (1970), 338–348 (German). MR 283692, DOI 10.1007/BF01111841
Bibliographic Information
- Rolf Schneider
- Affiliation: Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstrasse 1, D-79104 Freiburg i. Br., Germany
- MR Author ID: 199426
- ORCID: 0000-0003-0039-3417
- Email: rolf.schneider@math.uni-freiburg.de
- Received by editor(s): October 26, 2008
- Published electronically: June 25, 2009
- Communicated by: Jon G. Wolfson
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 3899-3903
- MSC (2000): Primary 52A20; Secondary 52A21
- DOI: https://doi.org/10.1090/S0002-9939-09-10041-2
- MathSciNet review: 2529898