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ATTRACTIVITY FOR TWO-DIMENSIONAL LINEAR SYSTEMS

WHOSE ANTI-DIAGONAL COEFFICIENTS ARE PERIODIC

JITSURO SUGIE AND AYANO ENDO

(Communicated by Yingfei Yi)

Abstract. This paper deals with the linear system x′ = A(t)x with A(t) be-
ing a 2× 2 matrix. The anti-diagonal components of A(t) are assumed to be
periodic, but the diagonal components are not necessarily periodic. Our con-
cern is to establish sufficient conditions for the zero solution to be attractive.
Floquet theory is of no use in solving our problem, because not all compo-
nents are periodic. Another approach is adopted. Some simple examples are
included to illustrate the main result.

1. Introduction

We consider the linear system

(1) x′ = A(t)x =

(
− r(t) p(t)

− p(t) − q(t)

)
x,

where the prime denotes d/dt; the coefficients p(t), q(t) and r(t) are continuous for
t ≥ 0, and p(t) is a periodic function with period ω > 0. The coefficients q(t) and
r(t) are not always assumed to be periodic. Since system (1) has such a simple
form, it has broad applications to science and engineering.

It is well-known that the zero solution of (1) is asymptotically stable if it is
attractive; that is, every solution x(t) of (1) tends to 0 ∈ R

2 as t → ∞. The
purpose of this paper is to give sufficient conditions on p(t), q(t) and r(t) which
guarantee the attractivity of the zero solution of (1).

Floquet’s theorem is available for the special case where q(t) and r(t) are also
periodic functions with period ω. Let Φ(t) be the fundamental matrix of (1) with
Φ(0) = E, the 2 × 2 identity matrix. Then Φ(ω) is called the monodromy matrix
of (1). Let µ1 and µ2 be the eigenvalues of the monodromy matrix Φ(ω). The
eigenvalues µ1 and µ2 are often called the Floquet multipliers of (1). By Abel’s
formula,

detΦ(ω) = detΦ(0) exp

(
−

∫ ω

0

(q(s) + r(s))ds

)
= exp

(
−

∫ ω

0

(q(s) + r(s))ds

)
.
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Thus, the Floquet multipliers µ1 and µ2 are the roots of the equation

µ2 − trΦ(ω)µ+ exp

(
−

∫ ω

0

(q(s) + r(s))ds

)
= 0.

It follows from Floquet’s theorem that the zero solution of (1) with periodic co-
efficients q(t) and r(t) is attractive if and only if the Floquet multipliers µ1 and
µ2 have magnitude strictly less than 1. Hence, in this special case, necessary and
sufficient conditions for the zero solution of (1) to be attractive are that

|trΦ(ω)| < 1 + exp

(
−

∫ ω

0

(q(s) + r(s))ds

)
and

exp

(
−

∫ ω

0

(q(s) + r(s))ds

)
< 1.

For example, we can find Floquet’s theorem in the books [2, 3, 5, 8, 16].
Although the above conditions are necessary and sufficient for the zero solution

of (1) to be attractive, it is difficult to estimate the absolute value of the trace of
Φ(ω), because it is impossible to find a fundamental matrix of (1) in general. Of
course, Floquet’s theorem is useless when q(t) or r(t) is not periodic. Then, without
knowledge of a fundamental matrix of (1), can we decide whether the zero solution
is attractive? What kind of condition on A(t) will guarantee the attractivity of the
zero solution of (1)?

We give an answer to our question in Sections 2 and 3. In Section 2, we state the
main result and present some preparatory lemmas. In Section 3, we give the proof
of the main result. To illustrate our main result, we take some concrete examples
and exhibit positive orbits of (1) in Section 4. In addition, we mention the approach
via Floquet theory.

2. Some lemmas

Let

R(t) =

∫ t

0

r(s)ds and ψ(t) = 2(q(t)− r(t))

for t ≥ 0. For the sake of convenience, we write

ψ+(t) = max{0, ψ(t)} and ψ−(t) = max{0,−ψ(t)}.
Note that ψ(t) = ψ+(t) − ψ−(t) and |ψ(t)| = ψ+(t) + ψ−(t). If r(t) ≡ 0 and
p(t) ≡ k > 0, then ψ(t) = 2q(t) and system (1) is equivalent to the damped linear
oscillator of one degree of freedom,

(2) x′′ + q(t)x′ + k2x = 0.

It is clear that the equilibrium (x, x′) = (0, 0) of (2) corresponds to the zero solution
of (1). It is well-known that the divergence of an indefinite integral of q(t) is not
sufficient to guarantee that the equilibrium of (2) will be attractive. For this reason,
it is natural to make a stronger assumption on ψ(t).

We introduce an important concept here. A nonnegative function φ(t) is said to
be weakly integrally positive if ∫

I

φ(t)dt = ∞
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for every set I =
∞⋃

n=1

[τn, σn] such that τn+ δ < σn < τn+1 < σn+∆ for some δ > 0

and ∆ > 0. For example, 1/(1 + t) and sin2 t/(1 + t) are weakly integrally positive
functions (see [6, 7, 13, 14, 15]).

Our main result is as follows:

Theorem 1. Suppose that q(t) and R(t) are bounded for t ≥ 0. Suppose also that

(i) ψ+(t) is weakly integrally positive;

(ii)

∫ ∞

0

ψ−(t)dt < ∞.

Then the zero solution of (1) is attractive.

Before proving our result, we present some lemmas.

Lemma 2. Suppose that assumption (ii) in Theorem 1 holds . Let v(t) be nonneg-
ative and continuously differentiable on [t0,∞) for some t0 > 0. If

(3) v′(t) ≤ ψ−(t)v(t) for t ≥ t0,

then v′(t) is absolutely integrable, and therefore v(t) has a nonnegative limiting
value.

Proof. By (3), we have(
v(t) exp

(
−

∫ t

t0

ψ−(s)ds

))′

= (v′(t)− ψ−(t)v(t)) exp

(
−

∫ t

t0

ψ−(s)ds

)
≤ 0

for t ≥ t0. Integrating this inequality from t0 to t, we obtain

v(t) ≤ v(t0) exp

(∫ t

t0

ψ−(s)ds

)
for t ≥ t0.

Hence, using (3) again, we get

v′(t) ≤ v(t0) exp

(∫ t

t0

ψ−(s)ds

)
ψ−(t) for t ≥ t0.

It follows from assumption (ii) that

v′(t) ≤ v(t0) exp

(∫ ∞

t0

ψ−(s)ds

)
ψ−(t) for t ≥ t0.

Since the right-hand side of the above inequality is positive for t ≥ t0, we see that

(v′)+(t) ≤ v(t0) exp

(∫ ∞

t0

ψ−(s)ds

)
ψ−(t).

Consequently,∫ ∞

t0

(v′)+(s)ds ≤ v(t0) exp

(∫ ∞

t0

ψ−(s)ds

)∫ ∞

t0

ψ−(s)ds < ∞.

On the other hand, since v(t) ≥ 0 for t ≥ t0, we get∫ ∞

t0

(v′)−(s)ds =

∫ ∞

t0

(v′)+(s)ds−
∫ ∞

t0

v′(s)ds ≤
∫ ∞

t0

(v′)+(s)ds+ v(t0) < ∞.
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Hence, we obtain∫ ∞

t0

|v′(s)|ds =
∫ ∞

t0

(
(v′)+(s) + (v′)−(s)

)
ds < ∞.

Since v(t) is nonnegative for t ≥ t0 and v′(t) is absolutely integrable, it turns out
that v(t) has a limiting value v0 ≥ 0. This completes the proof of Lemma 2. �

Using a classical Lyapunov’s direct method, we can prove that all solutions of
(1) are uniformly bounded ; that is, for any α > 0, there exists a β(α) > 0 such that
t0 ≥ 0 and ‖x0‖ < α imply ‖x(t; t0,x0)‖ < β for all t ≥ t0. For details about the
direct method of Lyapunov, see the books [1, 2, 4, 5, 9, 10, 11, 12, 17, 18, 19], for
example.

Lemma 3. Suppose that R(t) is bounded for t ≥ 0. If assumption (ii) in Theorem 1
holds , then all solutions of (1) are uniformly bounded .

Proof. Let x = (x, y) and define two Lyapunov functions

V (t,x) =
1

2
e2R(t)

(
x2 + y2

)
and

U(t,x) = V (t,x) exp

(
−

∫ t

0

ψ−(s)ds

)

on [0,∞)× R
2. From the boundedness of R(t), we can choose an L > 0 such that

|R(t)| < L for t ≥ 0. Let

M =

∫ ∞

0

ψ−(s)ds

(because of assumption (ii), such an M exists). Then, we have

1

2
e−(2L+M)

(
x2 + y2

)
≤ V (t,x)e−M ≤ U(t,x) ≤ V (t,x) ≤ 1

2
e2L

(
x2 + y2

)
.

Thus, U(t,x) tends to ∞ as ‖x‖ → ∞ uniformly for t ≥ 0 (i.e. it is radially
unbounded), and it is decrescent. Differentiate V (t,x) along any solution of (1) to
obtain

V̇(1)(t,x) = −((q(t)− r(t))e2R(t)y2 ≤ ψ−(t)V (t,x)

on [0,∞)× R
2. Hence, we have

U̇(1)(t,x) =
{
V̇(1)(t,x)− ψ−(t)V (t,x)

}
exp

(
−

∫ t

0

ψ−(s)ds

)
≤ 0.

We therefore conclude that all solutions of (1) are uniformly bounded by using a
Lyapunov-type theorem due to Yoshizawa [17, 18, 19]. �

Remark 1. Using the same Lyapunov function U(t,x), we can prove that the zero
solution of (1) is uniformly stable.

Recall that p(t) is a periodic function with period ω > 0. Let

p = max
t∈[0,ω]

p(t) and p = min
t∈[0,ω]

p(t).

Taking p ≥ p into account, we see that if p+ p ≥ 0, then p > 0; if p+ p < 0, then
p < 0. Since p(t) is continuous for t ≥ 0, we see that p(t) has the following property
(we omit the proof).
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Lemma 4. Suppose that p(t) is a nontrivial periodic function with period ω > 0.
If p+ p ≥ 0, then there exist numbers a and b with 0 ≤ a < b ≤ ω such that

p(t) ≥ 1

2
p > 0 for a ≤ t ≤ b.

If p+ p < 0, then there exist numbers a and b with 0 ≤ a < b ≤ ω such that

p(t) ≤ 1

2
p < 0 for a ≤ t ≤ b.

Remark 2. Let m be any integer. Since p(t) is a periodic function with period
ω > 0, it turns out that if p+ p ≥ 0, then

p(t) ≥ 1

2
p > 0 for a+mω ≤ t ≤ b+mω;

if p+ p < 0, then

p(t) ≤ 1

2
p < 0 for a+mω ≤ t ≤ b+mω.

3. Proof of the main result

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let x(t; t0,x0) be a solution of (1) passing through (t0,x0) ∈
[0,∞) × R

2. It follows from Lemma 3 that for any α > 0, there exists a β(α) > 0
such that t0 ≥ 0 and ‖x0‖ < α imply that

(4) ‖x(t; t0,x0)‖ < β for t ≥ t0.

For the sake of brevity, we write (x(t), y(t)) = x(t; t0,x0) and

v(t) = V (t, x(t), y(t)).

Then, we have

(5) v(t) =
1

2
e2R(t)

(
x2(t) + y2(t)

)
and

(6) v′(t) = −((q(t)− r(t))e2R(t)y2 ≤ ψ−(t)v(t)

for t ≥ t0 (see the calculation of V̇(1)(t,x) in the proof of Lemma 2). Hence, from
Lemma 2, we see that v(t) has a limiting value v0 ≥ 0. If v0 = 0, then by (5) the
solution (x(t), y(t)) tends to 0 as t → ∞. This completes the proof. Thus, we need
consider only the case in which v0 > 0. We will show that this case does not occur.

Because of (4), we see that |y(t)| is bounded for t ≥ t0. Hence, |y(t)| has an
inferior limit and a superior limit. First, we will show that the inferior limit of
|y(t)| is zero, and we will then show that the superior limit of |y(t)| is also zero.

Suppose that lim inft→∞ |y(t)| > 0. Then, there exist a γ > 0 and a T1 ≥ t0
such that y(t) > γ for t ≥ T1. It follows from (6) and Lemma 2 that

∞ >

∫ ∞

t0

|v′(s)|ds = 1

2

∫ ∞

t0

|ψ(s)|e2R(s)y2(s)ds

≥ 1

2
γ2

∫ ∞

T1

ψ+(s)e
2R(s)ds ≥ 1

2
γ2e−2L

∫ ∞

T1

ψ+(s)ds,

where L is the number given in the proof of Lemma 3. This contradicts assump-
tion (i). Thus, we see that lim inft→∞ |y(t)| = 0.
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Suppose that lim supt→∞ |y(t)| > 0. Let ν = lim supt→∞ |y(t)|. Since q(t) is
bounded, we can find a q > 0 such that

(7) |q(t)| ≤ q for t ≥ 0.

Since v(t) tends to a positive value v0 as t → ∞, there exists a T2 ≥ t0 such that

(8) 0 <
1

2
v0 < v(t) <

3

2
v0 for t ≥ T2.

Let ε be so small that

(9) 0 < ε < min

{
1

2
ν,

√
pe−2Lv0

4(q + 2/(b− a))2 + p2
,

√
pe−2Lv0

4(q + 2/(b− a))2 + p2

}
,

where a and b are the numbers given in Lemma 4. Then, since lim inft→∞ |y(t)| = 0,
we can select two intervals [τn, σn] and [tn, sn] with [tn, sn] ⊂ [τn, σn], T2 < τn and
τn → ∞ as n → ∞ such that |y(τn)| = |y(σn)| = ε, |y(tn)| = ν/2, |y(sn)| = 3ν/4
and

|y(t)| ≥ ε for τn < t < σn,(10)

0 ≤ |y(t)| ≤ ε for σn < t < τn+1,(11)

1

2
ν < |y(t)| < 3

4
ν for tn < t < sn.(12)

By (5), (8) and (11), we have

(13) |x(t)| =
√
2e−2R(t)v(t)− y2(t) ≥

√
e−2Lv0 − ε2

for σn ≤ t ≤ τn+1.

Claim. The sequences {τn} and {σn} satisfy τn+1 − σn ≤ 2ω for any integer n.
Suppose that there exists an n0 ∈ N such that τn0+1−σn0

> 2ω. We can choose
an m ∈ N such that (m− 1)ω < σn0

≤ mω. Hence, we have

τn0+1 > σn0
+ 2ω > (m− 1)ω + 2ω = (m+ 1)ω,

and therefore [mω, (m + 1)ω] ⊂ [σn0
, τn0+1]. There are two cases to consider: (a)

p+p ≥ 0 and (b) p+p < 0. In case (a), by Lemma 4 and Remark 2, p(t) ≥ p/2 > 0
for t ∈ [a + mω, b + mω] ⊂ [mω, (m + 1)ω]. Hence, using the second equation in
system (1) with (7), (11) and (13), we have

(14) |y′(t)| ≥ |p(t)||x(t)| − |q(t)||y(t)| = 1

2
p
√
e−2Lv0 − ε2 − qε

for a+mω < t < b+mω. It follows from (9) that

(15)
1

2
p
√
e−2Lv0 − ε2 − qε >

2

b− a
ε.

From (11) and (14), we can estimate that

2ε ≥ |y(b+mω)|+ |y(a+mω)| ≥
∣∣∣∣∣
∫ b+mω

a+mω

y′(s)ds

∣∣∣∣∣
=

∫ b+mω

a+mω

|y′(s)|ds ≥ (b− a)

(
1

2
p
√
e−2Lv0 − ε2 − qε

)
.
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This contradicts (15). In case (b), by Lemma 4 and Remark 2, p(t) ≤ p/2 < 0 for
t ∈ [a +mω, b +mω] ⊂ [mω, (m+ 1)ω]. Hence, combining this with (7), (11) and
(13), we obtain

(16) |y′(t)| ≥ |p(t)||x(t)| − |q(t)||y(t)| = −1

2
p
√
e−2Lv0 − ε2 − qε

for a+mω < t < b+mω. It follows from (9) that

(17) −1

2
p
√
e−2Lv0 − ε2 − qε >

2

b− a
ε.

From (11) and (16), we can estimate that

2ε ≥ |y(b+mω)|+ |y(a+mω)| ≥
∣∣∣∣∣
∫ b+mω

a+mω

y′(s)ds

∣∣∣∣∣
=

∫ b+mω

a+mω

|y′(s)|ds ≥ (b− a)

(
−1

2
p
√
e−2Lv0 − ε2 − qε

)
.

This contradicts (17). Thus, the claim is proved.

Let I =

∞⋃
n=1

[τn, σn]. Then, by means of Lemma 2 with (6) and (10), we get

∞ >

∫ ∞

t0

|v′(s)|ds = 1

2

∫ ∞

t0

|ψ(s)|e2R(s)y2(s)ds

≥ 1

2
e−2L

∫ ∞

t0

ψ+(s)y
2(s)ds ≥ 1

2
ε2e−2L

∫
I

ψ+(s)ds.

Hence, it follows from assumption (i) and the Claim that lim infn→∞(σn− τn) = 0.
Since [tn, sn] ⊂ [τn, σn], it follows that

(18) lim inf
n→∞

(sn − tn) = 0.

By (5), (8) and (12), we have

|x(t)| =
√
2e−2R(t)v(t)− y2(t) ≤

√
3e2Lv0 −

ν2

4

for tn ≤ t ≤ sn. Let K = max{|p|, |p|}. Then, from (7) and (12), we see that

|y′(t)| ≤ |p(t)||x(t)|+ |q(t)||y(t)| < K

√
3e2Lv0 −

ν2

4
+

3

4
qν

for tn ≤ t ≤ sn. Letting N = K
√
3e2Lv0 − ν2/4 + 3qν/4 and integrating this

inequality from tn to sn, we obtain

1

4
ν = |y(sn)| − |y(tn)| ≤ |y(sn)− y(tn)|

=

∣∣∣∣
∫ sn

tn

y′(s)ds

∣∣∣∣ ≤
∫ sn

tn

|y′(s)|ds ≤ N(sn − tn).

This contradicts (18). We therefore conclude that lim supt→∞ |y(t)| = ν = 0.
In summary, y(t) tends to zero as t → ∞. Hence, there exists a T3 ≥ T2 such

that

(19) |y(t)| < ε for t ≥ T3.
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Let l be an integer satisfying lω > T3. Using (19) instead of (11) and following the
same process as in the proof of the Claim, we see that if p+ p ≥ 0, then

2ε ≥ |y(b+ lω)|+ |y(a+ lω)| ≥
∣∣∣∣∣
∫ b+lω

a+lω

y′(s)ds

∣∣∣∣∣
=

∫ b+lω

a+lω

|y′(s)|ds ≥ (b− a)

(
1

2
p
√
e−2Lv0 − ε2 − qε

)
> 2ε,

which is a contradiction; if p+ p < 0, then

2ε ≥ |y(b+ lω)|+ |y(a+ lω)| ≥
∣∣∣∣∣
∫ b+lω

a+lω

y′(s)ds

∣∣∣∣∣
=

∫ b+lω

a+lω

|y′(s)|ds ≥ (b− a)

(
−1

2
p
√
e−2Lv0 − ε2 − qε

)
> 2ε,

which is again a contradiction. Thus, the case of v0 > 0 cannot happen.
The proof of Theorem 1 is thus complete. �

4. Examples

We illustrate our main result with simple examples in which p(t), q(t) and r(t)
are periodic. It is well-known that if the zero solution of a linear periodic system
is attractive, then it is uniformly asymptotically stable (for example, see [5, 18]).

Example 1. Let λ > 0. Consider system (1) with

(20) p(t) = cos t, q(t) =
λ

2− sin t
and r(t) = 0.

Then the zero solution is attractive.

Since λ/3 ≤ q(t) ≤ λ and R(t) ≡ 0, it is clear that q(t) and R(t) are bounded
for t ≥ 0. Also, assumptions (i) and (ii) are satisfied. In fact, we have

ψ(t) = 2(q(t)− r(t)) =
2λ

2− sin t
,

and therefore

ψ+(t) =
2λ

2− sin t
and ψ−(t) = 0

for t ≥ 0. Hence, ψ+(t) is weakly integrally positive and∫ ∞

0

ψ−(t)dt = 0.

Thus, by means of Theorem 1, we conclude that the zero solution is attractive.
Figure 1(a) shows a positive orbit of (1) with (20) and λ = 0.1. The starting

point x0 is (−1, 0) and the initial time t0 is 0. The positive orbit moves around the
origin 0 in a clockwise and a counter-clockwise direction alternately, because p(t)
changes its sign. The positive orbit approaches the origin 0 as it goes up and down.

Example 2. Let λ ≥ 1. Consider system (1) with

(21) p(t) = cosλt, q(t) = cos2 t+ sin t and r(t) = sin t.

Then the zero solution is attractive.
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It is easy to check that q(t) and R(t) are bounded for t ≥ 0 and that assumptions
(i) and (ii) are satisfied. We omit the details.

In Figure 1(b), we show a positive orbit of (1) with (21) and λ = 4. The positive
orbit starts from the point (−1, 0) at the initial time 0. The positive orbit goes
to the right and then goes to the left, and it repeats such a movement regularly.
Although the positive orbit displays intricate behavior, it approaches the origin 0
ultimately.

(a) (b)

Figure 1. (a) A positive orbit of (1) with (20); (b) a positive orbit
of (1) with (21)

In Examples 1 and 2, all coefficients of (1) are periodic functions with period 2π.
However, we cannot find the monodromy matrix Φ(2π). It is particularly hard to
estimate the absolute value of the trace of Φ(2π). For this reason, we cannot apply
Floquet’s theorem to Examples 1 and 2 directly. Theorem 1 has the advantage of
being applicable to cases where the monodromy matrix of (1) cannot be found and
cases where q(t) or r(t) is not periodic.

λ µ1 µ2

1 0.3351718550789 0.0793024028529

0.1 0.8888872982404 0.7827240687567

0.01 0.9882826823640 0.9758079535053

0.001 0.9988220356864 0.9975540561378

Table 1. Floquet multipliers of (1) with (20)

λ µ1 µ2

1 0.5569470757759 0.0775907086028

10 0.9845517600942 0.0438919719768

100 0.9998429464892 0.0432207062297

1000 0.9999986933319 0.0432139974342

Table 2. Floquet multipliers of (1) with (21)
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Fortunately, in Examples 1 and 2, the Floquet multipliers µ1 and µ2 can be
calculated by a numerical scheme. As shown in Tables 1 and 2, |µ1| < 1 and
|µ2| < 1. Hence, we see that the zero solution of (1) is attractive.

Remark 3. The zero solution of system (1) with (20) is attractive if and only if
λ > 0. In fact, if λ ≤ 0, then

exp

(
−

∫ ω

0

(q(s) + r(s))ds

)
= exp

(
−

∫ ω

0

λ

2− sin t
ds

)
≥ 1.

Hence, as mentioned in Section 1, the zero solution is not attractive in this case.
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