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ON TRACES OF SOBOLEV FUNCTIONS ON THE BOUNDARY

OF EXTENSION DOMAINS
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(Communicated by Nigel J. Kalton)

Abstract. Assume that Ω ⊂ R
N is a bounded W 1,p-extension domain and

that µ is an upper d-Ahlfors measure on ∂Ω with p ∈ (1, N) and d ∈ (N−p,N).
Then there exist continuous trace operators from W 1,p(Ω) into Lq(∂Ω, dµ) and
into Bp

β(∂Ω, dµ) for every q ∈ [1, dp/(N − p)] and every β ∈ (0, 1− (N − d)/p].

1. The main result

The following theorem is the main result in this note.

Theorem 1.1. Let p ∈ [1,∞] be fixed and let Ω ⊂ R
N be a bounded W 1,p-extension

domain and µ be an upper d-Ahlfors measure on a closed subset S ⊂ Ω with d ∈
(N − p,N) ∩ (0, N).

(1) Let q = s = ∞ if p = N = 1.
(2) Let q, s ∈ [1,∞) if p = N ≥ 2.
(3) Let q = s = ∞ if p > N .
(4) Let q = dp/(N − p) > p and s ∈ [1, q) if 1 < p < N .

Then there exists a mapping T : W 1,p(Ω) → Lq(S, dµ) satisfying

• T : W 1,p(Ω) → Lq(S, dµ) is linear and continuous,
• T : W 1,p(Ω) → Ls(S, dµ) is compact,
• Tu = u|S if u ∈ W 1,p(Ω) ∩ C(Ω).

Of particular interest is the case when S equals the boundary of Ω.

Proof. Case (3) is obvious since W 1,p(Ω) is compactly embedded into C(Ω) by the
Theorem of Rellich-Kondrachov. For case (1) one has to note that Ω is an open and
bounded interval in R. Case (2) follows from Corollary 7.4, and case (4) follows
from Corollary 7.3. �

2. Preliminaries

In this article we will distinguish between pointwise defined functions and equiv-
alence classes of functions. For example, the Lp-spaces consist of equivalence classes
of p-integrable functions which coincide up to a set of measure zero. Another ex-
ample are the Sobolev spaces W 1,p(Ω), where Ω ⊂ R

N is an open set. These spaces
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consist of (equivalence classes of) functions u ∈ Lp(Ω) such that the distributional
derivatives Dju (j = 1, . . . , N) belong again to Lp(Ω). Equipped with the norm

‖u‖W 1,p(Ω) :=
∑
|α|≤1

‖Dαu‖Lp(Ω) ,

it is a Banach space. It is well-known that for every f ∈ W 1,p(Ω) there exists
a pointwise defined function u ∈ f which is Capp-quasi continuous on Ω. Here

Capp : P(RN ) → [0,∞] denotes the classical p-capacity given by

Capp(A) := inf
{
‖u‖pW 1,p(RN ) : u ≥ 1 a.e. on a neighborhood of A

}
.

Since such a Capp-quasi continuous representative is unique up to a Capp-polar set,

we can redefine the Sobolev space W 1,p(Ω) as follows:

W1,p(Ω) :=
{
[u] : u ∈ f ∈ W 1,p(Ω) is Capp −quasi continuous

}
,

where the above equivalence class [u] consists of all Capp-quasi continuous functions
v such that v = u almost everywhere on Ω.

3. Nullspaces

In order to define general trace operators we have to introduce nullspaces and
equivalence classes of functions related to such nullspaces.

Definition 3.1. Let M be an arbitrary set. Then we call a set N ⊂ P(M) a
nullspace on M if N satisfies the following two conditions:

(N1) ∅ ∈ N ;
(N2) An ∈ N for n ∈ N implies

⋃
n∈N

An ∈ N .

On the vector space F(M) of all functions from M into R we define the equiva-
lence relation ∼N related to a nullspace N on M by

(3.1) f ∼N g :⇔ ∃N ∈ N such that f = g on M \N.

Then the space F (M,N ) := F(M)/ ∼N consists of equivalence classes of functions
fromM into R which coincide outside a nullset N ∈ N . The name ‘nullset’ indicates
that the set N is in some sense ‘small’, such as the nullsets for a measure or the
polar sets for a capacity.

4. The trace

In this section we will define what we mean by a trace operator Tr : X → Y for
certain function spaces X and Y . Note that we do not require any topology on the
range space Y .

Definition 4.1. Let B be a topological space, A a subset of B and let NA and NB

be nullspaces on A and B, respectively. Let X be a subspace of F (B,NB) equipped
with a norm ‖·‖X such that C(B) ∩ X is dense in X and let Y be a subspace of
F (A,NA). Then we say that Y is a trace space of X if the following holds:

For every f in X there exists an element fA ∈ Y such that for
every sequence fn ∈ C(B) ∩X which converges to f in X and for
every uA ∈ fA there exists a subsequence fnk

and a set N ∈ NA

such that fnk
(x) → uA(x) for every x ∈ A \N .
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If Y is a trace space of X, then fA ∈ Y is unique in Y . Therefore we can define
the trace operator TrX,Y : X → Y by TrX,Y f := fA.

Assume that Y is a trace space of X. Then the following are immediate conse-
quences.

• TrX,Y : X → Y is linear.
• TrX,Y u = u|A if u ∈ C(B) ∩X.

Example 4.2. Let Ω ⊂ R
N be an open set, p ∈ (1,∞), A be a subset of Ω,

X := W 1,p(Ω) and let Y := F (A,Np) where Np is the nullspace which consists of
all Capp-polar sets contained in A. Then Y is a trace space of X and the (unique)
trace operator Tr : X → Y is given by

Tr f := f̃ |A,

where f̃ denotes the Capp-quasi continuous representative of f . In fact, if un ∈
C(Ω)∩W 1,p(Ω) converges to f in W 1,p(Ω), then there exists a subsequence (unk

)k
which converges Capp-quasi everywhere to f̃ .

Let Ω ⊂ R
N be an open set and let X ⊂ W 1,p(Ω) be a subspace. In order to

get a trace for functions in X on the boundary ∂Ω of Ω we will consider X as a
subspace of F (Ω,N ), where N is given by

N :=
{
A ⊂ Ω : λ(A ∩ Ω) = 0

}
and λ is the Lebesgue measure in R

N . This leads to two main difficulties:
(1) Since in general C(Ω) ∩ W 1,p(Ω) is not dense in W 1,p(Ω), we cannot take

X = W 1,p(Ω). Therefore we will consider X := W̃ 1,p(Ω), where W̃ 1,p(Ω) is defined

to be the closure of Cc(Ω) ∩W 1,p(Ω) in W 1,p(Ω). Note that W 1,p(Ω) = W̃ 1,p(Ω)
whenever the boundary of Ω is smooth.

(2) For the range space Y it is in general not possible to take the space Y :=
F (∂Ω,Np), where Np denotes the set of all Capp-polar subsets of ∂Ω. In fact (see

[4, Example 2.5.5]) there exist a bounded domain Ω ⊂ R
N (N ≥ 2), a compact

set A ⊂ ∂Ω with Capp(A) > 0 and a sequence fn ∈ C(Ω) ∩ W 1,p(Ω) such that

fn ≡ 1 on A and fn → 0 in W 1,p(A). Hence the trace of the zero-function cannot
be defined up to a Capp-polar set. This problem can be solved via the relative
capacity introduced in the following section.

5. The relative capacity

In this section we will introduce the relative p-capacity and we will cite the
theorems which we will need in the following. The relative 2-capacity Cap2,Ω was
first introduced by W. Arendt and M. Warma [3] to study the Robin Laplacian on
‘arbitrary’ domains. For the extension to p ∈ (1,∞) we refer to [6].

Definition 5.1. Let Ω ⊂ R
N be an open set and let p ∈ (1,∞). Then the relative

p-capacity Capp,Ω : P(Ω) → [0,∞] is defined by

Capp,Ω(A) := inf
{
‖u‖pW 1,p(Ω) : u ∈ Yp,Ω(A)

}
,

where Yp,Ω(A) consists of all functions u ∈ W̃ 1,p(Ω) such that u ≥ 1 almost every-
where on O ∩ Ω for a neighborhood O of A.
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Theorem 5.2 ([5, Theorem 3.22] or [6, Theorem 3.27]). For every u ∈ W̃ 1,p(Ω)
there is a Capp,Ω-quasi continuous representative ũ : Ω → R which is unique up to

a Capp,Ω-polar set in Ω.

This theorem suggests that there exists a trace operator from W̃ 1,p(Ω) into
Y := F (∂Ω,Np(Ω)) (given by Tru := ũ|∂Ω), where Np(Ω) consists of all Capp,Ω-
polar sets in ∂Ω. In fact, this follows from

Theorem 5.3 ([5, Consequence of Theorem 3.24] or [6, Theorem 3.29]). Let Ω ⊂
R

N be an open set, p ∈ (1,∞) and let un ∈ C(Ω)∩W 1,p(Ω) be a convergent sequence
in W 1,p(Ω) with limit u. Then there is a subsequence (unk

)k such that unk
→ ũ

Capp,Ω-quasi everywhere on Ω.

In many concrete partial differential equations and variational problems it is
useful to know that the trace operator maps W̃ 1,p(Ω) into Lq(∂Ω, µ) for some
q ≥ 1 and some Borel measure µ on ∂Ω. Obviously, a necessary condition for that
is the validity of the following implication:

(5.1) Capp,Ω(A) = 0 =⇒ µ(A) = 0 for all Borel sets A ⊂ ∂Ω.

We will call a Borel measure µ on ∂Ω Capp,Ω-admissible if (5.1) holds. To get a
large class of admissible measures the following relation between the p-capacity and
the relative p-capacity will be important.

Theorem 5.4 ([5, Consequence of Theorem 3.14] or [6, Theorem 3.20]). Let Ω ⊂
R

N be a W 1,p-extension domain. Then there exists a constant C > 0 such that

Capp(A) ≤ C · Capp,Ω(A) ≤ C · Capp(A)

for every set A ⊂ Ω.

6. Traces for upper/lower Ahlfors measures

In this section we show that if Ω ⊂ R
N is a bounded W 1,p-extension domain

(1 < p < N) and µ is an upper d-Ahlfors measure on ∂Ω with 0 < N − d < p, then
there exists a continuous trace operator from W 1,p(Ω) into some Besov spaces on
the boundary ∂Ω. Note that we do not assume that Ω is a so-called (ε, δ)-domain
as required in [7, Theorem 10.6].

Theorem 6.1. Let Ω ⊂ R
N be a W 1,p-extension domain and let E1, E2 : W 1,p(Ω)

→ W1,p(RN ) be two (possibly nonlinear) extension operators. Then E1f = E2f
Capp-quasi everywhere on Ω for every f ∈ W 1,p(Ω).

Proof. Let f ∈ W 1,p(Ω) and let fj := Ejf , j = 1, 2. Then f1 and f2 are Capp,Ω-

quasi continuous on Ω and f1 = f2 a.e. on Ω. By Theorem 5.2 we get that f1 = f2
Capp,Ω-q.e. on Ω, and hence by Theorem 5.4 it follows that f1 = f2 Capp-q.e. on

Ω. �

Remark 6.2. We can reformulate Theorem 6.1 as follows. Let Ω ⊂ R
N be a bounded

W 1,p-extension domain and let u1, u2 ∈ W1,p(RN ). If u1 = u2 almost everywhere
on Ω, then u1 = u2 Capp-quasi everywhere on Ω.

The existence of a trace operator is given in the following.
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Corollary 6.3. If Ω is a W 1,p-extension domain and S ⊂ Ω, then there exists a
unique trace operator Tr : W 1,p(Ω) → F (S,Np), where Np consists of all Capp-polar
sets in S, given by

Tr f := Ef |S
for every extension operator E : W 1,p(Ω) → W1,p(RN ).

Definition 6.4. Let S ⊂ R
N be a compact set and let d ∈ (0, N). Then we call a

Borel measure µ with supp(µ) ⊂ S an upper d-Ahlfors measure on S if there exist
constants M,R0 > 0 such that

(6.1) µ(B(x, r)) ≤ Mrd for all 0 < r < R0 and x ∈ S.

If (6.1) holds with ≤ replaced by ≥, then we will call µ a lower d-Ahlfors measure.
Note that for s := N − d an upper/lower d-Ahlfors measure on S is called an
upper/lower s-Ahlfors measure in [7].

Remark 6.5. Let p ∈ (1, N) and S ⊂ R
N be compact. If µ is an upper d-Ahlfors

measure on S with N − p < d < N , then

Capp(A) = 0 =⇒ Hd(A) = 0 =⇒ µ(A) = 0

for all Borel sets A ⊂ S. Here Hd denotes the d-dimensional Hausdorff measure on
R

N .

The following result follows from D. Danielli, N. Garofalo and D. Nhieu; see the
beautiful Theorem 8.6 in [7] and A. Jonsson [10, Theorem 3].

Theorem 6.6 (Interior sharp trace inequality). Let S ⊂ R
N be a compact set,

p ∈ (1, N), N − p < d < N and µ be an upper d-Ahlfors measure on S. Then for
every 0 < β ≤ 1− (N − d)/p there exists a constant C > 0 such that

‖f‖Bp
β(F,dµ) ≤ C · ‖f‖W 1,p(RN )

for all f ∈ W 1,p(RN ).

Here the Besov space Bp
β(S, dµ) is defined to be the vector space of all f ∈

Lp(S, dµ) for which

Np
β (f, S, dµ)

p :=

∫
S

∫
S

|f(x)− f(y)|p

|x− y|βp+d
dµ(y) dµ(x) < ∞.

The norm on Bp
β(S, dµ) is given by ‖·‖Bp

β(S,dµ)
:= ‖·‖Lp(S,dµ) + Np

β (·, S, dµ). Now

we can prove the following trace theorem.

Theorem 6.7. Let Ω ⊂ R
N be a bounded W 1,p-extension domain, S ⊂ Ω closed,

p ∈ (1, N), N − p < d < N and µ be an upper d-Ahlfors measure on S. Then for
every 0 < β ≤ 1− (N − d)/p there exists a constant C > 0 such that

‖Tr f‖Bp
β(S,dµ)

≤ C · ‖f‖W 1,p(Ω) for every f ∈ W 1,p(Ω).

Proof. Let E : W 1,p(Ω) → W1,p(RN ) be a linear and bounded extension operator.
It follows from Theorem 6.6, using that Ef = Tr f µ-a.e. on S, that

‖Tr f‖Bp
β(S,dµ)

≤ C2 · ‖Ef‖W 1,p(Ω) ≤ C · ‖f‖W 1,p(Ω)

for all f ∈ W 1,p(Ω). �
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The following result follows from D. Danielli, N. Garofalo and D. Nhieu; see
Theorem 11.1 in [7]

Theorem 6.8 (Embedding a Besov space into a Lebesgue space). Let S ⊂ R
N be

a compact set, β ∈ (0, 1), p ≥ 1 and let µ be a lower d-Ahlfors measure on S with
d ∈ (βp,N). Then for q := pd/(d−βp) > p there exists a constant C > 0 such that

‖f‖Lq(S,dµ) ≤ C · ‖f‖Bp
β(S,dµ)

for every f ∈ Bp
β(S, dµ).

Now we can prove the following trace result.

Proposition 6.9. Let Ω ⊂ R
N be a bounded W 1,p-extension domain, S ⊂ Ω closed,

p ∈ (1, N), N − p < d < N and µ be a d-Ahlfors measure on S. Then there exists
a constant C > 0 such that

‖Tr f‖Lq(S,dµ) ≤ C · ‖f‖W 1,p(Ω)

for every f ∈ W 1,p(Ω) and p ≤ q ≤ pd/(N − p).

Proof. It is sufficient to prove the limit case q := pd/(N − p). We get from Theo-
rem 6.7 with β := 1− (N − d)/p ∈ (0, 1) that there exists a constant C1 such that

(6.2) ‖Tr f‖Bp
β(S,dµ)

≤ C1 · ‖f‖W 1,p(Ω)

for all f ∈ W 1,p(Ω). From Theorem 6.8, using that q = pd/(d − βp) and βp < d,
we get that there exists a constant C2 > 0 such that

(6.3) ‖Tr f‖Lq(S,dµ) ≤ C2 · ‖Tr f‖Bp
β(S,dµ)

.

Combining (6.2) and (6.3) proves the claim. �

Remark 6.10. In the case when Ω is a bounded Lipschitz domain, S = ∂Ω and µ is
the surface measure σ = HN−1|∂Ω, then we get that there exists a constant C > 0
such that

‖Tr f‖Lq(∂Ω,dσ) ≤ C · ‖f‖W 1,p(Ω)

for every f ∈ W 1,p(Ω) and 1 ≤ q ≤ p(N − 1)/(N − p). This is a well-known result;
see Adams [2, Theorem 5.22].

7. Traces for upper Ahlfors measures

If one is only interested in traces of Sobolev functions in Lq-spaces, there is no
need to pass through a Besov space as we will show here. Note that the heart of all
these trace results is contained in Theorems 5.4 and 6.1. We will use the following
theorem, which goes back to D. R. Adams (see [1, Theorem 7.2.2]).

Theorem 7.1. Let 1 < p < q < ∞ and µ be a (positive) Radon measure on R
N .

Then the following are equivalent.

(1) I : W1,p(RN ) → Lq(RN , dµ) is well-defined and continuous.
(2) There exists a constant C > 0 such that for all x ∈ R

N and r ∈ (0, 1],

µ(B(x, r)) ≤ C · Capp(B(x, r))q/p.

From this beautiful theorem we get immediately the following result.
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Theorem 7.2. Let 1 < p < q < ∞, Ω ⊂ R
N be a bounded W 1,p-extension domain,

S ⊂ Ω closed and µ be a (positive) Radon measure on S. Then the following are
equivalent.

(1) Tr : W1,p(Ω) → Lq(S, dµ) is well-defined and continuous.
(2) There exists a constant C > 0 such that for all x ∈ S and r ∈ (0, 1],

µ(B(x, r)) ≤ C · Capp(B(x, r))q/p.

For concrete applications one is interested in having a sufficient and easy to
verify condition on the measure µ to get the continuity of the trace operator. This
is obtained in the following.

Corollary 7.3. Let p ∈ (1, N) and Ω ⊂ R
N be a bounded W 1,p-extension domain

and S ⊂ Ω be closed. If µ is an upper d-Ahlfors measure on S with d ∈ (N − p,N),
then

Tr : W 1,p(Ω) → Lq(S, dµ)

is continuous for q := dp/(N − p) > p and

Tr : W 1,p(Ω) → Ls(S, dµ)

is compact for all s ∈ [1, q).

Proof. Using that there exists a constant C1 > 0 such that Capp(B(x, r)) ≥ C1 ·
rN−p for all x ∈ R

N and r > 0, we get that

µ(B(x, r)) ≤ Mrd ≤ C2 · Capp(B(x, r))d/(N−p) = C2 · Capp(B(x, r))q/p

for all x ∈ ∂Ω and r ∈ (0, 1]. Hence by Theorem 7.2 we get the continuity of
Tr : W 1,p(Ω) → Lq(∂Ω, dµ). The compactness follows from [1, Theorem 7.3.2];
note that µ(∂Ω) < ∞. �

Corollary 7.4. Let p ≥ N ≥ 2 and Ω ⊂ R
N be a bounded W 1,p-extension domain,

S ⊂ Ω be a closed set, µ be an upper d-Ahlfors measure on S with d ∈ (0, N) and
let q ∈ [1,∞). Then there exists a linear and compact trace operator

Tr : W 1,p(Ω) → Lq(S, dµ)

such that Tru = u|S for all u ∈ C(Ω) ∩W 1,p(Ω).

Proof. Let s ∈ (1, N) be such that d ∈ (N − s,N) and r := ds/(N − s) > q and
let B be an open ball such that Ω ⊂ B. Denote by E an extension operator from
W 1,p(Ω) → W 1,p(B) and let Tr2 : W 1,s(B) → Lr(S, dµ) be given by Corollary 7.3.
Then Tr given by

W 1,p(Ω)
E→ W 1,p(B) ↪→ W 1,s(B)

Tr2→ L(r+q)/2(S, dµ) ↪→ Lq(S, dµ)

is compact. �

8. Final remarks

The following interesting result, which gives a relation between W 1,p-extension
domains and trace operators, is obtained by P. Harjulehto [9, Theorem 4.3]:

Theorem 8.1. Let p ∈ (N − 1,∞), Ω ⊂ R
N be a bounded domain such that its

boundary is d-regular, d ∈ [N − 1, N). Then the following are equivalent:

(1) Ω is a W 1,p-extension domain.
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(2) There exists a bounded linear trace operator

T : W 1,p(Ω) → Bp
1−(N−d)/p(∂Ω, dH

d)

such that Tu = limr→0 λ(Ω(x, r))
−1

∫
Ω(x,r)

u(x) dx Hd-a.e. on ∂Ω and Lip-

schitz continuous functions are dense in W 1,p(Ω).

Here Ω(x, r) := Ω ∩B(x, r).

For further and related results we refer the reader to Adams and Hedberg [1],
Haj�lasz and Martio [8], Jonsson [10], Maz’ya [11], Wallin [12] and the references
therein.
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