Refined configuration results for extremal Type II lattices of ranks $40$ and $80$
HTML articles powered by AMS MathViewer
- by Noam D. Elkies and Scott Duke Kominers
- Proc. Amer. Math. Soc. 138 (2010), 105-108
- DOI: https://doi.org/10.1090/S0002-9939-09-10063-1
- Published electronically: August 27, 2009
Abstract:
We show that, if $L$ is an extremal Type II lattice of rank $40$ or $80$, then $L$ is generated by its vectors of norm $\operatorname {min}(L)+2$. This sharpens earlier results of Ozeki, and the second author and Abel, which showed that such lattices $L$ are generated by their vectors of norms $\operatorname {min}(L)$ and $\operatorname {min}(L)+2$.References
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- N. D. Elkies, On the quotient of an extremal Type II lattice of rank $40$, $80$, or $120$ by the span of its minimal vectors, in preparation, 2009.
- Scott Duke Kominers and Zachary Abel, Configurations of rank-$40r$ extremal even unimodular lattices $(r=1,2,3)$, J. Théor. Nombres Bordeaux 20 (2008), no. 2, 365–371 (English, with English and French summaries). MR 2477509
- S. D. Kominers, Configurations of extremal even unimodular lattices, Int. J. Number Theory 5 (2009), 457–464.
- C. L. Mallows, A. M. Odlyzko, and N. J. A. Sloane, Upper bounds for modular forms, lattices, and codes, J. Algebra 36 (1975), no. 1, 68–76. MR 376536, DOI 10.1016/0021-8693(75)90155-6
- Michio Ozeki, On even unimodular positive definite quadratic lattices of rank $32$, Math. Z. 191 (1986), no. 2, 283–291. MR 818672, DOI 10.1007/BF01164032
- Michio Ozeki, On the configurations of even unimodular lattices of rank $48$, Arch. Math. (Basel) 46 (1986), no. 1, 54–61. MR 829816, DOI 10.1007/BF01197141
- Michio Ozeki, On the structure of even unimodular extremal lattices of rank $40$, Rocky Mountain J. Math. 19 (1989), no. 3, 847–862. Quadratic forms and real algebraic geometry (Corvallis, OR, 1986). MR 1043254, DOI 10.1216/RMJ-1989-19-3-847
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 0344216
- B. B. Venkov, Even unimodular Euclidean lattices of dimension $32$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116 (1982), 44–55, 161–162 (Russian). Integral lattices and finite linear groups. MR 687838
- Boris Venkov, Réseaux et designs sphériques, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., vol. 37, Enseignement Math., Geneva, 2001, pp. 10–86 (French, with English and French summaries). MR 1878745
- N. Ja. Vilenkin, Special functions and the theory of group representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by V. N. Singh. MR 0229863
Bibliographic Information
- Noam D. Elkies
- Affiliation: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
- Email: elkies@math.harvard.edu
- Scott Duke Kominers
- Affiliation: Department of Mathematics and Department of Economics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
- Address at time of publication: 8520 Burning Tree Road, Bethesda, Maryland 20817
- Email: kominers@fas.harvard.edu, skominers@gmail.com
- Received by editor(s): May 29, 2009
- Published electronically: August 27, 2009
- Communicated by: Ken Ono
- © Copyright 2009 Noam D. Elkies and Scott Duke Kominers
- Journal: Proc. Amer. Math. Soc. 138 (2010), 105-108
- MSC (2000): Primary 11H55; Secondary 05B30, 11F11
- DOI: https://doi.org/10.1090/S0002-9939-09-10063-1
- MathSciNet review: 2550174