Galois groups over function fields of positive characteristic
HTML articles powered by AMS MathViewer
- by John Conway, John McKay and Allan Trojan
- Proc. Amer. Math. Soc. 138 (2010), 1205-1212
- DOI: https://doi.org/10.1090/S0002-9939-09-10130-2
- Published electronically: November 20, 2009
- PDF | Request permission
Abstract:
We prove examples motivated by work of Serre and Abhyankar.References
- Shreeram Abhyankar, Coverings of algebraic curves, Amer. J. Math. 79 (1957), 825–856. MR 94354, DOI 10.2307/2372438
- Shreeram S. Abhyankar, Galois theory on the line in nonzero characteristic, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 68–133. MR 1118002, DOI 10.1090/S0273-0979-1992-00270-7
- Shreeram S. Abhyankar, Mathieu group coverings in characteristic two, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 3, 267–271 (English, with English and French summaries). MR 1205196, DOI 10.2307/2161167
- Shreeram S. Abhyankar, Resolution of singularities and modular Galois theory, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 2, 131–169. MR 1816069, DOI 10.1090/S0273-0979-00-00892-2
- Shreeram S. Abhyankar and Ikkwon Yie, Small degree coverings of the affine line in characteristic two, Discrete Math. 133 (1994), no. 1-3, 1–23. MR 1298961, DOI 10.1016/0012-365X(94)90013-2
- B. H. Matzat, J. McKay, and K. Yokoyama (eds.), Algorithmic methods in Galois theory, Elsevier Ltd, Oxford, 2000. J. Symbolic Comput. 30 (2000), no. 6. MR 1800030
- “Atlas of Finite Group Representations”, brauer.maths.qmul.ac.uk/Atlas/v3.
- David Casperson and John McKay, Symmetric functions, $m$-sets, and Galois groups, Math. Comp. 63 (1994), no. 208, 749–757. MR 1234424, DOI 10.1090/S0025-5718-1994-1234424-5
- Conway, J., McKay, J., “$M_{24}$ is the Galois group over $F_2(t)$ of $x^{24} + x + t$”, Mathematical Abstracts, Amer. Math. Soc., 93T-12-69, p. 391, 1993.
- F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I, North-Holland Mathematical Library, Vol. 16, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR 0465509
- B. L. van der Waerden, Algebra. Vol 1, Frederick Ungar Publishing Co., New York, 1970. Translated by Fred Blum and John R. Schulenberger. MR 0263582
Bibliographic Information
- John Conway
- Affiliation: Department of Mathematics, Fine Hall, Princeton University, Washington Road, Princeton, New Jersey 08544-1000
- Email: conway@math.princeton.edu
- John McKay
- Affiliation: Department of Mathematics and CICMA, Concordia University, 1455 de Maisonneuve Boulevard, West, Montreal, Quebec H3G 1M8, Canada
- Email: mac@mathstat.concordia.ca
- Allan Trojan
- Affiliation: Department of Mathematics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
- Email: atrojan@yorku.ca
- Received by editor(s): November 25, 2008
- Received by editor(s) in revised form: July 27, 2009
- Published electronically: November 20, 2009
- Communicated by: Jonathan I. Hall
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 1205-1212
- MSC (2000): Primary 11F22, 11F03; Secondary 30F35, 20C34
- DOI: https://doi.org/10.1090/S0002-9939-09-10130-2
- MathSciNet review: 2578514