AN EXAMPLE OF AN ALMOST GREEDY BASIS IN $L^1(0, 1)$

SMBAT GOGYAN

(Communicated by Michael T. Lacey)

Abstract. We give an explicit construction of an almost greedy basis of $L^1(0, 1)$, complementing the results on existence of such a basis. The basis is described in terms of the Haar basis. We construct a quasi-greedy basis in a Banach space which is isomorphic to $L^1(0, 1)$, and then we calculate an isomorphic image of a quasi-greedy basis.

1. Introduction

Let $\Psi = \{\psi_k\}_{k=1}^{+\infty}$ be a normalized basis in a Banach space X. For each $f \in X$ we have

$$f = \sum_{k=1}^{\infty} c_k(f, \Psi) \psi_k,$$

where $\lim_{k \to \infty} c_k(f, \Psi) = 0$. We define $\Lambda_0 = \emptyset$; then for each $m \geq 1$ we inductively define sets $\Lambda_m \subset \mathbb{N}$ to satisfy

$$\# \Lambda_m = m, \quad \Lambda_{m-1} \subset \Lambda_m \quad \text{and} \quad \min_{k \in \Lambda_m} |c_k(f, \Psi)| \geq \max_{k \not\in \Lambda_m} |c_k(f, \Psi)|.$$

Note that the sets Λ_m are not uniquely determined. Denote the set of all such sequences $\{\Lambda_m\}$ by $D(f)$. For any $\Lambda \in D(f)$ we put

$$G_m(f) = G_m(f, \Psi) = G_m(f, \Psi, \Lambda) = \sum_{k \in \Lambda_m} c_k(f, \Psi) \psi_k.$$

This nonlinear method of approximation is known as a Thresholding Greedy Algorithm (TGA) or as a Greedy algorithm (see for example [6]). In fact $G_m(f)$ can be realized by the following procedure: take the expansion (1) and form a sum of m terms with the biggest $|c_k(f, \Psi)|$. If the basis Ψ is unconditional, then obviously

$$\|G_m(f, \Psi, \Lambda)\|_X \leq C \cdot \|f\|_X,$$

with a constant C independent of f, m and Λ.

Definition. A basis $\Psi = \{\psi_k\}_{k=1}^{+\infty}$ is called quasi-greedy for X if there exists a constant C such that for any $f \in X$ and for any $\Lambda \in D(f)$ the inequality (2) holds for any $m \in \mathbb{N}$.

The following theorem was proved in [8].

Received by the editors April 19, 2009, and, in revised form, August 14, 2009.

2000 Mathematics Subject Classification. Primary 42C30.

Key words and phrases. Haar system, greedy algorithm, quasi-greedy, almost greedy, $L^1(0, 1)$. ©2009 American Mathematical Society

Reverts to public domain 28 years from publication

1425
Theorem A. A basis \(\Psi = \{ \psi_k \}_{k=1}^{+\infty} \) is quasi-greedy for \(X \) if and only if for any \(f \in X \) there exists \(\Lambda \in D(f) \) such that

\[
\lim_{m \to +\infty} \| f - G_m(f, \Psi, \Lambda) \|_X = 0.
\]

Definition 2. A basis \(\Psi = \{ \psi_k \}_{k=1}^{+\infty} \) is called almost greedy for \(X \) if there exists a constant \(C \) such that for all \(f \in X \) and \(m \in \mathbb{N} \) we have

\[
\| f - G_m(f, \Psi) \|_X \leq C \inf_{A \subset \mathbb{N} : |A| = m} \left\{ \left\| f - \sum_{j \in A} a_j \psi_j \right\|_X : a_j \in \mathbb{R}, |A| = m \right\}.
\]

It follows from Definition 2 that every almost greedy basis is also a quasi-greedy basis. It was proved in [2] that \(\Psi \) is almost greedy if and only if \(\Psi \) is quasi-greedy and democratic.

Definition 3. A basis \(\Psi = \{ \psi_k \}_{k=1}^{+\infty} \) is called greedy for \(X \) if there exists a constant \(C \) such that for all \(f \in X \) and \(m \in \mathbb{N} \) we have

\[
\| f - G_m(f, \Psi) \|_X \leq C \inf_{A \subset \mathbb{N} : |A| = m} \left\{ \left\| f - \sum_{j \in A} a_j \psi_j \right\|_X : a_j \in \mathbb{R}, |A| = m \right\}.
\]

It was proved in [6] that a basis is greedy if and only if it is unconditional and democratic. So we have the following relations:

- Greedy \(\Rightarrow \) Unconditional \(\Rightarrow \) Quasi-greedy,
- Greedy \(\Rightarrow \) Almost greedy \(\Rightarrow \) Quasi-greedy,
- Greedy = Unconditional + Democratic,
- Almost greedy = Quasi-greedy + Democratic.

It was proved by V. N. Temlyakov (see [7]) that the Haar system is a greedy basis in \(L^p(0,1) \), \(1 < p < \infty \).

It is known that there is no unconditional basis in \(L^1(0,1) \). But it was proved in [1] that there is an almost greedy basis in \(L^1(0,1) \). That proof was not constructive, and that basis was not constructed. In [3] it was shown that the Haar system is not a quasi-greedy basis in \(L^1(0,1) \). The same result for general Haar systems and for the Franklin system was proved in [4] and [5] correspondingly.

In this paper we give an example of an almost greedy basis in \(L^1(0,1) \). We denote

\[
M_i = 2^i - i - \sum_{p:2^p+1 < i} (2^{2p+1} - 1), \quad i = 0, 1, \ldots
\]

It is easy to check that

\[
M_0 = 1 \quad \text{and} \quad M_{i+1} - M_i = \begin{cases} 0, & \text{if } i = 2^p + 1 \text{ for some natural } p, \\ 2^i - 1, & \text{otherwise.} \end{cases}
\]

Let \(\{ h_n \} \) be a classical Haar system normalized in \(L^1(0,1) \) and let \(\psi_i = h_{2^i + 2} \) (i.e. the Haar function with support \([2^{-i}, 2^{1-i}) \)).
Let \(i \geq 0 \) and \(i \neq 2^p + 1 \) for any \(p \geq 0 \). For any \(0 \leq k \leq M_{i+1} - M_i = 2^i - 1 \) we define
\[
\tilde{f}_{(i,k)} = \begin{cases}
 h_{i+1} - \frac{1}{2^i} \sum_{j=0}^{2^i-2} \psi_{M_i+j} + \psi_{M_i+k}, & \text{if } k < 2^i - 1, \\
 h_{i+1} - \frac{1}{2^i} \sum_{j=0}^{2^i-2} \psi_{M_i+j}, & \text{if } k = 2^i - 1.
\end{cases}
\]

Theorem 1. The system \(\{\tilde{f}_{(i,k)}\} \) is an almost greedy basis in \(L^1(0,1) \).

We construct a quasi-greedy basis in an auxiliary Banach space and show that it is an isomorphic image of \(\{\tilde{f}_{(i,k)}\} \).

2. Preliminaries and auxiliary results

We need results from [1]. Let \(X \) be a Banach space with a basis \(\{b_n\} \). By passing to an equivalent norm we may assume that \(\{b_n\} \) is normalized and bimonotone. Let \(S \) be a 1-symmetric and 1-unconditional sequence space with basis \(\{e_i\}, e_i = \{\delta_{ij}\} \).

Let \(\{e^*_i\} \) be the sequence of biorthogonal functionals in \(S^* \).

Define
\[
f(n) = \|e_1 + \ldots + e_n\|_S
\]
and
\[
g(n) = \frac{n}{f(n)} = \|e^*_1 + \ldots + e^*_n\|_{S^*}.
\]

We assume that \(\{e_i\} \) is not equivalent to the unit vector basis of \(c_0 \). Thus,
\[
f(n) \to \infty \text{ as } n \to \infty.
\]

For \(n \geq 1 \), let \(\sigma_n = [2^{n-1}; 2^n - 1] \),
\[
v_n = \frac{1}{f(2^{n-1})} \sum_{k \in \sigma_n} e_k \quad \text{and} \quad v^*_n = \frac{1}{g(2^{n-1})} \sum_{k \in \sigma_n} e^*_k.
\]

Let \(P \) be the norm-one projection on \(S \) defined by
\[
P\xi = \sum_{n=1}^{\infty} \langle \xi, v^*_n \rangle v_n,
\]
and let \(Q = I - P \). Define a norm on \(c_{00} \) by
\[
\|\xi\|_Y = \left\| \sum_{n=1}^{\infty} \langle \xi, v^*_n \rangle b_n \right\|_X + \|Q\xi\|_S
\]
and then complete it to obtain a sequence space \(Y \).

The following statements were proved in [1].

Statement 1 (Proposition 6.1). Suppose that \(\{b_n\} \) is a bimonotone basis for \(X \). Then \(\{e_n\} \) is a basis for \(Y \) such that
\[
\frac{1}{8} \sup_n \eta_n f(n) \leq \|\xi\|_Y \leq 6 \sum_{n=1}^{\infty} \frac{f(n)}{n} \eta_n
\]
for all real scalars \(\xi = (\xi_n) \) in \(c_{00} \), where \(\{\eta_n\} \) is the nonincreasing rearrangement of \(\{\|\xi_i\|\} \).

Statement 2. Suppose that \(X \) is a Banach space with a basis that contains a complemented subspace isomorphic to \(S \). Then \(Y \sim X \).
Statement 3 (Theorem 7.1). Suppose that \(\{b_n\} \) is a basis for \(X \) and \(S = \ell_1 \). Then \(\{e_n\} \) is a quasi-greedy basis for \(Y \).

Let us apply Statements 1-3 when \(X = L^1(0,1) \) and \(S = \ell_1, \{b_i\} = \{h_i\} \) (the Haar system).

Lemma 1. The system \(\{e_i\} \) is an almost greedy basis in \(Y \) and

\[
Q(e_{2^i+k}) = \left(0, \ldots, 0, \underbrace{-2^{-i}, \ldots, -2^{-i}}_{2^i-1}, 1 - 2^{-i}, \underbrace{2^{-i}, \ldots, 2^{-i}}_{2^i-k-1}, 0, 0 \ldots}\right)
\]

for all \(0 \leq k < 2^i \).

Proof. We have \(f(n) = n \) and \(g(n) = 1 \). Let \(\xi = \sum_{k \in A} e_k \) with \(|A| = m \). Then

\[
\eta_n = \begin{cases}
1, & n \leq m, \\
0, & n > m.
\end{cases}
\]

Hence, according to Statement 1 we conclude that

\[
\frac{m}{8} \leq \| \sum_{k \in A} e_k \|_Y \leq 6m.
\]

Hence \(\| \sum_{k \in A} e_k \|_Y \asymp |A| \). So \(\{e_n\} \) is democratic in \(Y \). Combined with Statement 3 we conclude that \(\{e_n\} \) is an almost greedy basis. Equality (4) immediately follows from the definition of \(Q \). Lemma 1 is proved.

According to the definition of \(Y \) there exists an isomorphic operator \(R : Y \mapsto L^1(0,1) \oplus Q(\ell_1) \) such that

\[
R(e_{2^i+k}) = (h_{i+1}, Q(e_{2^i+k}))
\]

for every \(k = 0, \ldots, 2^i-1; \ i = 0, 1, \ldots \).

3. ISOMORPHIC OPERATORS

Let \(\{M_i\} \) be the sequence defined by (3) and let \(\Lambda_n = [2^{n-1}, 2^n - 2] \). Denote

\[
\Lambda = \{n_1, n_2, n_3, \ldots\} = \bigcup_{p=0}^{\infty} \Lambda_{2^p+2} \quad \text{and} \quad \{m_1, m_2, \ldots\} = \left(\bigcup_{n=1}^{\infty} \Lambda_n\right) \setminus \Lambda,
\]

where sequences \(\{n_i\} \) and \(\{m_i\} \) are increasing. For every \(\{a_i\} \in Q(\ell_1) \) we define the operator \(S : Q(\ell_1) \mapsto \ell_1 \oplus \ell_1 \) by

\[
S(\{a_i\}) = \left(\{a_{m_1}, a_{m_2}, \ldots\}, \{a_{n_1}, a_{n_2}, \ldots\}\right).
\]

Since \(\{a_i\} \in Q(\ell_1) \) if and only if \(\{a_i\} \in \ell_1 \) and \(a_{2^i-1} = -\sum_{i \leq n} a_i \) for all natural \(n \), we conclude that \(S \) is an isomorphic operator. The next lemma follows from the definitions of \(Q \) and \(S \).
Lemma 2. 1) Let \(i \neq 2^p + 1 \) for any \(p \geq 0 \). Then

\[
S(Q(e_{2^{-i}+k})) = \begin{cases}
\left(0, \ldots, 0, -2^{-i}, \ldots, -2^{-i}, 1 - 2^{-i}, -2^{-i}, \ldots, -2^{-i}, 0 \ldots \right), & \text{if } k < 2^i - 1, \\
\left(0, \ldots, 0, -2^{-i}, \ldots, -2^{-i}, 0 \ldots \right), & \text{if } k = 2^i - 1.
\end{cases}
\]

2) Let \(i = 2^p + 1 \) for some \(p \geq 0 \) and \(0 \leq k < 2^i \). Then

\[
S(Q(e_{2^{-i}+k})) = \begin{cases}
\left(0, \ldots, 0, -2^{-i}, \ldots, -2^{-i}, 1 - 2^{-i}, -2^{-i}, \ldots, -2^{-i}, 0 \ldots \right), & \text{if } k < 2^i - 1, \\
\left(0, \ldots, 0, -2^{-i}, \ldots, -2^{-i}, 0, 0 \ldots \right), & \text{if } k = 2^i - 1.
\end{cases}
\]

Functions \(\psi_i \) have disjoint supports \((\text{supp}(\psi_i) = (2^{-i}, 2^{1-i})) \). Therefore we have

\[
\| \sum_{i=1}^{\infty} a_i \psi_i \|_{L^1(0,1)} = \| \{a_i\} \|_{\ell_1}.
\]

Denote

\[
Z = \{ f \in L^1(0,1) : \int_0^1 f(t) \psi_n(t) dt = 0 \text{ for all } n \in \mathbb{N} \}.
\]

Let us define the operator \(T : L^1(0,1) \to (Z, \ell_1) \) by the formula

\[
T(f) = T\left(\sum_{n=1}^{\infty} a_n h_n\right) = \left(\sum_{n=1, n \neq 2^{p+2}}^{\infty} a_n h_n, \{a_{2^{p+2}}\}\right).
\]

Note that

\[
T(h_n) = \begin{cases}
(0, \{\delta_{p+1,1}\}), & \text{if } n = 2^p + 2, \\
(h_n, \{0\}), & \text{otherwise}.
\end{cases}
\]

The next lemma is obvious.

Lemma 3. The operator \(T \) represents an isomorphism between \(L^1(0,1) \) and \(Z \oplus \ell_1 \).

4. An almost greedy basis in \(L^1(0,1) \)

In the proof of Statement \(\boxed{} \) the following isomorphic chain was used:

\[
Y \sim X \oplus Q(S) \sim Z \oplus S \oplus Q(S) \sim Z \oplus S \oplus P(S) \oplus Q(S) \sim Z \oplus S \sim Z \oplus S \sim X.
\]
In the proof of Theorem 1 we will use the following:
\[Y \sim L^1(0, 1) \oplus Q(\ell_1) \]
\[\sim Z \oplus \ell_1 \oplus Q(\ell_1) \quad \text{(by operator } T) \]
\[\sim Z \oplus \ell_1 \oplus \ell_1 \oplus \ell_1 \quad \text{(by operator } S) \]
\[\sim L^1(0, 1) \oplus \ell_1 \oplus \ell_1. \quad \text{(by operator } T). \]

Proof of Theorem 1. For \(y \in Y \) denote
\[
\begin{align*}
R(y) &= (y_1, q_1), \text{ where } y_1 \in L^1(0, 1), \ q_1 \in Q(\ell_1); \\
T(y_1) &= (z_1, a_1), \text{ where } z_1 \in Z, \ a_1 \in \ell_1; \\
S(q_1) &= (a_2, a_3), \text{ where } a_2, a_3 \in \ell_1; \\
T^{-1}(z_1, a_2) &= y_2, \text{ where } y_2 \in L^1(0, 1);
\end{align*}
\]
and set
\[D(y) = \{y_2, a_1, a_3\}. \]

It is clear that \(D \) is an isomorphic operator from \(Y \) to \(L^1(0, 1) \oplus \ell_1 \oplus \ell_1 \). Now, let us calculate \(D(e_n) \). Let \(n = 2^i + k \) with \(0 \leq k < 2^i \). According to (5) we have
\[R(e_{2^i+k}) = (h_{i+1}, Q(e_{2^i+k})), \]
which means that \(y_1 = h_{i+1} \) and \(q_1 = Q(e_{2^i+k}) \). We consider four cases.

Case 1. \(i = 2^p + 1 \) for some \(p \geq 0 \) and \(k < 2^i - 1 \). According to (7)
\[
\begin{align*}
(z_1, a_1) &= T(h_{i+1}) = (0, \{\delta_{p+1,j}\}), \\
(a_2, a_3) &= S(Q(e_{2^i+k})) \\
&= \left(\{0\}, \{(0, \ldots, 0, -2^{-i}, \ldots, -2^{-i}, 1 - 2^{-i}, -2^{-i}, \ldots, -2^{-i}0 \ldots)\}\right), \\
y_2 &= T^{-1}(z_1, a_2) = T^{-1}(0, \{0\}) = 0.
\end{align*}
\]
Hence
\[D(e_{2^i+k}) = \left(0, \{\delta_{p+1,j}\}, \{(0, \ldots, 0, -2^{-i}, \ldots, -2^{-i}, 1 - 2^{-i}, -2^{-i}, \ldots, -2^{-i}0 \ldots)\}\right). \]

Case 2. \(i = 2^p + 1, \ k = 2^i - 1 \).
\[
\begin{align*}
(z_1, a_1) &= T(h_{i+1}) = (0, \{\delta_{p+1,j}\}), \\
(a_2, a_3) &= S(Q(e_{2^i+k})) = \left(\{0\}, \{(0, \ldots, 0, -2^{-i}, \ldots, -2^{-i}0 \ldots)\}\right), \\
y_2 &= T^{-1}(z_1, a_2) = T^{-1}(0, \{0\}) = 0.
\end{align*}
\]
Hence \[D(e_{2^i+k}) = \left(0, \{\delta_{p+1,j}\}, \{(0, \ldots, 0, -2^{-i}, \ldots, -2^{-i}0 \ldots)\}\right). \]
Case 3. \(i \neq 2^p + 1, \ k \neq 2^i - 1.\)

\[
\begin{align*}
(z_1, a_1) &= T(h_{i+1}) = (h_{i+1}, \{0\}), \\
(a_2, a_3) &= S(Q(e_{2^i+k})) \\
&= \left(\left(0, \ldots, 0, \underbrace{-2^{-i}, \ldots, -2^{-i}}_{M_i-1}, 1 - 2^{-i}, -2^{-i}, \ldots, -2^{-i}, 0 \ldots}, \{0\}\right), \\
y_2 &= T^{-1}(z_1, a_2) \\
&= T^{-1}\left(h_{i+1}, \left(0, \ldots, 0, \underbrace{-2^{-i}, \ldots, -2^{-i}}_{M_i-1}, 1 - 2^{-i}, -2^{-i}, \ldots, -2^{-i}, 0 \ldots}\right) \\
&= h_{i+1} - \frac{1}{2^i} \sum_{j=M_i}^{M_{i+1}} \psi_j + \psi_{M_{i+k}} = h_{i+1} - \frac{1}{2^i} \sum_{j=M_i}^{M_{i+1}-1} \psi_j + \psi_{M_{i+k}}.
\end{align*}
\]

Therefore \(D(e_{2^i+k}) = \left(f_{(i,k)}, \{0\}, \{0\}\right).\)

Case 4. \(i \neq 2^p + 1, \ k = 2^i - 1.\)

\[
\begin{align*}
(z_1, a_1) &= T(h_{i+1}) = (h_{i+1}, \{0\}), \\
(a_2, a_3) &= S(Q(e_{2^i+k})) = \left(\left(0, \ldots, 0, \underbrace{-2^{-i}, \ldots, -2^{-i}}_{M_i-1}, 0 \ldots}, \{0\}\right), \\
y_2 &= T^{-1}(z_1, a_2) = T^{-1}\left(h_{i+1}, \left(0, \ldots, 0, \underbrace{-2^{-i}, \ldots, -2^{-i}}_{M_i-1}, 0 \ldots\right)\right) \\
&= h_{i+1} - \frac{1}{2^i} \sum_{j=M_i}^{M_{i+1}-1} \psi_j.
\end{align*}
\]

Therefore \(D(e_{2^i+k}) = \left(f_{(i,k)}, \{0\}, \{0\}\right).\)

Finally we have

\[
D(e_{2^i+k}) = \begin{cases}
\{0, \ldots, 0, \ldots\}, & \text{if } i = 2^p + 1, \\
\left(f_{(i,k)}, \{0\}, \{0\}\right), & \text{if } i \neq 2^p + 1.
\end{cases}
\]

Since \(\{D(e_{2^i+k})\}\) is an almost-greedy basis in \(L^1(0, 1) \oplus \ell_1 \oplus \ell_1\), then the system \(\{f_{(i,k)}\}\) is an almost greedy basis in \(L^1(0, 1)\). Theorem 1 is proved. \(\square\)

Acknowledgment

The author is thankful to Michael Lacey for his suggestions and for help in the preparation of this paper.
References

Institute of Mathematics, National Academy of Sciences, 24B Marshal Baghramian Avenue, 0019 Yerevan, Armenia