Operator biprojectivity of compact quantum groups
HTML articles powered by AMS MathViewer
- by Matthew Daws
- Proc. Amer. Math. Soc. 138 (2010), 1349-1359
- DOI: https://doi.org/10.1090/S0002-9939-09-10220-4
- Published electronically: November 25, 2009
- PDF | Request permission
Abstract:
Given a (reduced) locally compact quantum group $A$, we can consider the convolution algebra $L^1(A)$ (which can be identified as the predual of the von Neumann algebra form of $A$). It is conjectured that $L^1(A)$ is operator biprojective if and only if $A$ is compact. The “only if” part always holds, and the “if” part holds for Kac algebras. We show that if the splitting morphism associated with $L^1(A)$ being biprojective can be chosen to be completely positive, or just contractive, then we already have a Kac algebra. We give another proof of the converse, indicating how modular properties of the Haar state seem to be important.References
- Oleg Yu. Aristov, Amenability and compact type for Hopf-von Neumann algebras from the homological point of view, Banach algebras and their applications, Contemp. Math., vol. 363, Amer. Math. Soc., Providence, RI, 2004, pp. 15–37. MR 2097947, DOI 10.1090/conm/363/06638
- O. Yu. Aristov, Biprojective algebras and operator spaces, J. Math. Sci. (New York) 111 (2002), no. 2, 3339–3386. Functional analysis, 8. MR 1847551, DOI 10.1023/A:1016047626689
- E. Bédos, G. J. Murphy, and L. Tuset, Co-amenability of compact quantum groups, J. Geom. Phys. 40 (2001), no. 2, 130–153. MR 1862084, DOI 10.1016/S0393-0440(01)00024-9
- E. Bédos, G. J. Murphy, and L. Tuset, Amenability and co-amenability of algebraic quantum groups. II, J. Funct. Anal. 201 (2003), no. 2, 303–340. MR 1986692, DOI 10.1016/S0022-1236(03)00021-1
- Erik Christensen and Allan M. Sinclair, Module mappings into von Neumann algebras and injectivity, Proc. London Math. Soc. (3) 71 (1995), no. 3, 618–640. MR 1347407, DOI 10.1112/plms/s3-71.3.618
- Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753
- Michel Enock and Jean-Marie Schwartz, Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992. With a preface by Alain Connes; With a postface by Adrian Ocneanu. MR 1215933, DOI 10.1007/978-3-662-02813-1
- Uffe Haagerup and Magdalena Musat, Classification of hyperfinite factors up to completely bounded isomorphism of their preduals, J. Reine Angew. Math. 630 (2009), 141–176. MR 2526788, DOI 10.1515/CRELLE.2009.037
- A. Ya. Helemskii, The homology of Banach and topological algebras, Mathematics and its Applications (Soviet Series), vol. 41, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by Alan West. MR 1093462, DOI 10.1007/978-94-009-2354-6
- Johan Kustermans, Locally compact quantum groups, Quantum independent increment processes. I, Lecture Notes in Math., vol. 1865, Springer, Berlin, 2005, pp. 99–180. MR 2132094, DOI 10.1007/11376569_{2}
- Johan Kustermans and Stefaan Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 6, 837–934 (English, with English and French summaries). MR 1832993, DOI 10.1016/S0012-9593(00)01055-7
- Johan Kustermans and Stefaan Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), no. 1, 68–92. MR 1951446, DOI 10.7146/math.scand.a-14394
- Ann Maes and Alfons Van Daele, Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), no. 1-2, 73–112. MR 1645264
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- Zhong-Jin Ruan and Guangwu Xu, Splitting properties of operator bimodules and operator amenability of Kac algebras, Operator theory, operator algebras and related topics (Timişoara, 1996) Theta Found., Bucharest, 1997, pp. 193–216. MR 1728421
- Volker Runde, Biflatness and biprojectivity of the Fourier algebra, Arch. Math. (Basel) 92 (2009), no. 5, 525–530. MR 2506954, DOI 10.1007/s00013-009-2970-3
- Volker Runde, Lectures on amenability, Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. MR 1874893, DOI 10.1007/b82937
- Piotr M. Sołtan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), no. 4, 1245–1270. MR 2210362
- M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition; Operator Algebras and Non-commutative Geometry, 5. MR 1873025
- M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006, DOI 10.1007/978-3-662-10451-4
- Thomas Timmermann, An invitation to quantum groups and duality, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. From Hopf algebras to multiplicative unitaries and beyond. MR 2397671, DOI 10.4171/043
- Jun Tomiyama, On the projection of norm one in $W^{\ast }$-algebras, Proc. Japan Acad. 33 (1957), 608–612. MR 96140
- Peter J. Wood, The operator biprojectivity of the Fourier algebra, Canad. J. Math. 54 (2002), no. 5, 1100–1120. MR 1924715, DOI 10.4153/CJM-2002-041-1
- S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) North-Holland, Amsterdam, 1998, pp. 845–884. MR 1616348
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665. MR 901157, DOI 10.1007/BF01219077
- S. L. Woronowicz, Twisted $\textrm {SU}(2)$ group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117–181. MR 890482, DOI 10.2977/prims/1195176848
Bibliographic Information
- Matthew Daws
- Affiliation: School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Email: matt.daws@cantab.net
- Received by editor(s): May 16, 2009
- Received by editor(s) in revised form: July 12, 2009
- Published electronically: November 25, 2009
- Communicated by: Marius Junge
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 1349-1359
- MSC (2010): Primary 46L89, 46M10; Secondary 22D25, 46L07, 46L65, 47L25, 47L50, 81R15
- DOI: https://doi.org/10.1090/S0002-9939-09-10220-4
- MathSciNet review: 2578527