Positive scalar curvature of totally nonspin manifolds
HTML articles powered by AMS MathViewer
- by Stanley Chang
- Proc. Amer. Math. Soc. 138 (2010), 1621-1632
- DOI: https://doi.org/10.1090/S0002-9939-09-09483-0
- Published electronically: December 16, 2009
- PDF | Request permission
Abstract:
In this paper we address the issue of positive scalar curvature on oriented nonspin compact manifolds whose universal cover is also nonspin. We provide a conjecture for an obstruction to such curvature in this venue that takes into account all the data known to date. The conjecture is proved for a wide class of closed manifolds based on their fundamental group structure.References
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018, DOI 10.1090/conm/167/1292018
- Homer Bechtell, Elementary groups, Trans. Amer. Math. Soc. 114 (1965), 355–362. MR 175967, DOI 10.1090/S0002-9947-1965-0175967-3
- Boris Botvinnik and Jonathan Rosenberg, The Yamabe invariant for non-simply connected manifolds, J. Differential Geom. 62 (2002), no. 2, 175–208. MR 1988502
- U. Christ and J. Lohkamp, Singular minimal hypersurfaces and scalar curvature, preprint, arXiv:math/0609338.
- James F. Davis and Kimberly Pearson, The Gromov-Lawson-Rosenberg conjecture for cocompact Fuchsian groups, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3571–3578. MR 1991770, DOI 10.1090/S0002-9939-03-06905-3
- M. J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc. London Math. Soc. (3) 38 (1979), no. 2, 193–215. MR 531159, DOI 10.1112/plms/s3-38.2.193
- Beno Eckmann, Cohomology of groups and transfer, Ann. of Math. (2) 58 (1953), 481–493. MR 58600, DOI 10.2307/1969749
- Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434. MR 577131, DOI 10.2307/1971103
- Michael Joachim, Toral classes and the Gromov-Lawson-Rosenberg conjecture for elementary abelian 2-groups, Arch. Math. (Basel) 83 (2004), no. 5, 461–466. MR 2102644, DOI 10.1007/s00013-004-1080-5
- Michael Joachim and Thomas Schick, Positive and negative results concerning the Gromov-Lawson-Rosenberg conjecture, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 213–226. MR 1778107, DOI 10.1090/conm/258/04066
- R. Jung and S. Stolz, private communication.
- Luise-Charlotte Kappe and Joseph Kirtland, Finite groups with trivial Frattini subgroup, Arch. Math. (Basel) 80 (2003), no. 3, 225–234. MR 1981175, DOI 10.1007/s00013-003-0788-y
- Sławomir Kwasik and Reinhard Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helv. 65 (1990), no. 2, 271–286. MR 1057244, DOI 10.1007/BF02566607
- Ian J. Leary and Brita E. A. Nucinkis, Every CW-complex is a classifying space for proper bundles, Topology 40 (2001), no. 3, 539–550. MR 1838994, DOI 10.1016/S0040-9383(99)00073-7
- Joachim Lohkamp, Positive scalar curvature in $\dim \geq 8$, C. R. Math. Acad. Sci. Paris 343 (2006), no. 9, 585–588 (English, with English and French summaries). MR 2269869, DOI 10.1016/j.crma.2006.09.013
- Wolfgang Lück, Survey on classifying spaces for families of subgroups, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., vol. 248, Birkhäuser, Basel, 2005, pp. 269–322. MR 2195456, DOI 10.1007/3-7643-7447-0_{7}
- Wolfgang Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2000), no. 2, 177–203. MR 1757730, DOI 10.1016/S0022-4049(98)90173-6
- Wolfgang Lück and Roland Stamm, Computations of $K$- and $L$-theory of cocompact planar groups, $K$-Theory 21 (2000), no. 3, 249–292. MR 1803230, DOI 10.1023/A:1026539221644
- Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169, DOI 10.1007/978-1-4419-8594-1
- Jonathan Rosenberg, $C^{\ast }$-algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 197–212 (1984). MR 720934
- J. Rosenberg, $C^\ast$-algebras, positive scalar curvature and the Novikov conjecture. II, Geometric methods in operator algebras (Kyoto, 1983) Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 341–374. MR 866507
- Jonathan Rosenberg, $C^\ast$-algebras, positive scalar curvature, and the Novikov conjecture. III, Topology 25 (1986), no. 3, 319–336. MR 842428, DOI 10.1016/0040-9383(86)90047-9
- Jonathan Rosenberg and Stephan Stolz, A “stable” version of the Gromov-Lawson conjecture, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 405–418. MR 1321004, DOI 10.1090/conm/181/02046
- Thomas Schick, A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology 37 (1998), no. 6, 1165–1168. MR 1632971, DOI 10.1016/S0040-9383(97)00082-7
- R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159–183. MR 535700, DOI 10.1007/BF01647970
- Reinhard Schultz, Positive scalar curvature and odd order abelian fundamental groups, Proc. Amer. Math. Soc. 125 (1997), no. 3, 907–915. MR 1363184, DOI 10.1090/S0002-9939-97-03683-6
Bibliographic Information
- Stanley Chang
- Affiliation: Department of Mathematics, Wellesley College, Wellesley, Massachusetts 02481
- MR Author ID: 312658
- Email: schang@wellesley.edu
- Received by editor(s): April 9, 2007
- Received by editor(s) in revised form: January 8, 2008
- Published electronically: December 16, 2009
- Additional Notes: This research was partially supported by NSF Grant DMS-9971657
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 1621-1632
- MSC (2010): Primary 32Q10
- DOI: https://doi.org/10.1090/S0002-9939-09-09483-0
- MathSciNet review: 2587446