Location of Nash equilibria: A Riemannian geometrical approach
HTML articles powered by AMS MathViewer
- by Alexandru Kristály
- Proc. Amer. Math. Soc. 138 (2010), 1803-1810
- DOI: https://doi.org/10.1090/S0002-9939-09-10145-4
- Published electronically: December 21, 2009
- PDF | Request permission
Abstract:
Existence and location of Nash equilibrium points are studied for a large class of a finite family of payoff functions whose domains are not necessarily convex in the usual sense. The geometric idea is to embed these non-convex domains into suitable Riemannian manifolds regaining certain geodesic convexity properties of them. By using recent non-smooth analysis on Riemannian manifolds and a variational inequality for acyclic sets, an efficient location result of Nash equilibrium points is given. Some examples show the applicability of our results.References
- Daniel Azagra and Juan Ferrera, Proximal calculus on Riemannian manifolds, Mediterr. J. Math. 2 (2005), no. 4, 437–450. MR 2192524, DOI 10.1007/s00009-005-0056-4
- Daniel Azagra, Juan Ferrera, and Fernando López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds, J. Funct. Anal. 220 (2005), no. 2, 304–361. MR 2119282, DOI 10.1016/j.jfa.2004.10.008
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Shiow-Yu Chang, Maximal elements in noncompact spaces with application to equilibria, Proc. Amer. Math. Soc. 132 (2004), no. 2, 535–541. MR 2022379, DOI 10.1090/S0002-9939-03-07054-0
- Pando Gr. Georgiev, Parametric Borwein-Preiss variational principle and applications, Proc. Amer. Math. Soc. 133 (2005), no. 11, 3211–3225. MR 2161143, DOI 10.1090/S0002-9939-05-07853-6
- Gábor Kassay, József Kolumbán, and Zsolt Páles, On Nash stationary points, Publ. Math. Debrecen 54 (1999), no. 3-4, 267–279. MR 1694524, DOI 10.5486/pmd.1999.1902
- Yu. S. Ledyaev and Qiji J. Zhu, Nonsmooth analysis on smooth manifolds, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3687–3732. MR 2302512, DOI 10.1090/S0002-9947-07-04075-5
- Władysław Kulpa and Andrzej Szymanski, Infimum principle, Proc. Amer. Math. Soc. 132 (2004), no. 1, 203–210. MR 2021263, DOI 10.1090/S0002-9939-03-06994-6
- J. F. McClendon, Minimax and variational inequalities for compact spaces, Proc. Amer. Math. Soc. 89 (1983), no. 4, 717–721. MR 719003, DOI 10.1090/S0002-9939-1983-0719003-2
- Jacqueline Morgan and Vincenzo Scalzo, Pseudocontinuous functions and existence of Nash equilibria, J. Math. Econom. 43 (2007), no. 2, 174–183. MR 2297122, DOI 10.1016/j.jmateco.2006.10.004
- John Nash, Non-cooperative games, Ann. of Math. (2) 54 (1951), 286–295. MR 43432, DOI 10.2307/1969529
- John F. Nash Jr., Equilibrium points in $n$-person games, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 48–49. MR 31701, DOI 10.1073/pnas.36.1.48
- R. Nessah, K. Kerstens, Characterization of the existence of Nash equilibria with non-convex strategy sets. Document du travail LEM, 2008-19, preprint; see http://lem.cnrs.fr/Portals/2/actus/DP_200819.pdf
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- J. E. Tala and E. Marchi, Games with non-convex strategy sets, Optimization 37 (1996), no. 2, 177–181. MR 1416049, DOI 10.1080/02331939608844209
- Constantin Udrişte and Constantin Udrişte, Convex functions and optimization methods on Riemannian manifolds, Mathematics and its Applications, vol. 297, Kluwer Academic Publishers Group, Dordrecht, 1994. MR 1326607, DOI 10.1007/978-94-015-8390-9
- Haomiao Yu and Zhixiang Zhang, Pure strategy equilibria in games with countable actions, J. Math. Econom. 43 (2007), no. 2, 192–200. MR 2298564, DOI 10.1016/j.jmateco.2006.09.008
- Abderrahmane Ziad, Pure strategy Nash equilibria of non-zero-sum two-person games: non-convex case, Econom. Lett. 62 (1999), no. 3, 307–310. MR 1684858, DOI 10.1016/S0165-1765(98)00246-8
Bibliographic Information
- Alexandru Kristály
- Affiliation: Department of Economics, Babeş-Bolyai University, 400591 Cluj-Napoca, Romania
- Email: alexandrukristaly@yahoo.com
- Received by editor(s): January 14, 2009
- Published electronically: December 21, 2009
- Additional Notes: This work was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by PN II IDEI$\_$527 of CNCSIS
- Communicated by: Peter A. Clarkson
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 1803-1810
- MSC (2000): Primary 91A10, 58B20, 49J40, 49J52, 46N10
- DOI: https://doi.org/10.1090/S0002-9939-09-10145-4
- MathSciNet review: 2587465