The loop group and the cobar construction
HTML articles powered by AMS MathViewer
- by Kathryn Hess and Andrew Tonks
- Proc. Amer. Math. Soc. 138 (2010), 1861-1876
- DOI: https://doi.org/10.1090/S0002-9939-09-10238-1
- Published electronically: December 21, 2009
- PDF | Request permission
Abstract:
We prove that for any $1$-reduced simplicial set $X$, Adams’ cobar construction $\Omega CX$ on the normalised chain complex of $X$ is naturally a strong deformation retract of the normalised chains $CGX$ on the Kan loop group $GX$. In order to prove this result, we extend the definition of the cobar construction and actually obtain the existence of such a strong deformation retract for all $0$-reduced simplicial sets.References
- J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 409–412. MR 79266, DOI 10.1073/pnas.42.7.409
- Hans-Joachim Baues and Andrew Tonks, On the twisted cobar construction, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 2, 229–245. MR 1426521, DOI 10.1017/S0305004196001363
- V. K. A. M. Gugenheim and H. J. Munkholm, On the extended functoriality of Tor and Cotor, J. Pure Appl. Algebra 4 (1974), 9–29. MR 347946, DOI 10.1016/0022-4049(74)90026-7
- V. K. A. M. Gugenheim and L. A. Lambe, Perturbation theory in differential homological algebra. I, Illinois J. Math. 33 (1989), no. 4, 566–582. MR 1007895
- V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff, Perturbation theory in differential homological algebra. II, Illinois J. Math. 35 (1991), no. 3, 357–373. MR 1103672
- Kathryn Hess, Paul-Eugène Parent, and Jonathan Scott, A chain coalgebra model for the James map, Homology Homotopy Appl. 9 (2007), no. 2, 209–231. MR 2366950
- Daniel M. Kan, Abstract homotopy. IV, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 542–544. MR 87938, DOI 10.1073/pnas.42.8.542
- Larry Lambe and Jim Stasheff, Applications of perturbation theory to iterated fibrations, Manuscripta Math. 58 (1987), no. 3, 363–376. MR 893160, DOI 10.1007/BF01165893
- J. Peter May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original. MR 1206474
- Frédéric Morace and Alain Prouté, Brown’s natural twisting cochain and the Eilenberg-Mac Lane transformation, J. Pure Appl. Algebra 97 (1994), no. 1, 81–89. MR 1310750, DOI 10.1016/0022-4049(94)90040-X
- R. H. Szczarba, The homology of twisted cartesian products, Trans. Amer. Math. Soc. 100 (1961), 197–216. MR 137111, DOI 10.1090/S0002-9947-1961-0137111-4
Bibliographic Information
- Kathryn Hess
- Affiliation: Institut de géométrie, algèbre et topologie (IGAT), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- MR Author ID: 307936
- Email: kathryn.hess@epfl.ch
- Andrew Tonks
- Affiliation: Statistics, OR and Mathematics Research Centre (STORM), London Metropolitan University, 166–220 Holloway Road, London N7 8DB, United Kingdom
- Email: a.tonks@londonmet.ac.uk
- Received by editor(s): March 13, 2009
- Published electronically: December 21, 2009
- Communicated by: Brooke Shipley
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 1861-1876
- MSC (2010): Primary 55P35; Secondary 16T05, 18G30, 55U10, 57T05, 57T30
- DOI: https://doi.org/10.1090/S0002-9939-09-10238-1
- MathSciNet review: 2587471