On additive complements
HTML articles powered by AMS MathViewer
- by Jin-Hui Fang and Yong-Gao Chen
- Proc. Amer. Math. Soc. 138 (2010), 1923-1927
- DOI: https://doi.org/10.1090/S0002-9939-10-10205-6
- Published electronically: February 5, 2010
- PDF | Request permission
Abstract:
Two infinite sequences $A$ and $B$ of non-negative integers are called additive complements if their sum contains all sufficiently large integers. Let $A(x)$ and $B(x)$ be the counting functions of $A$ and $B$. For additive complements $A$ and $B$, Sárközy and Szemerédi proved that if $\limsup \limits _{x\rightarrow \infty }\frac {A(x)B(x)}{x}\le 1$, then $A(x)B(x)-x\rightarrow +\infty$. In this paper, we prove that for additive complements $A$ and $B$, if $\limsup \limits _{x\rightarrow \infty }\frac {A(x)B(x)}{x}<\frac 54$ or $\limsup \limits _{x\rightarrow \infty }\frac {A(x)B(x)}{x}>2$, then $A(x)B(x)-x\rightarrow +\infty$.References
- L. Danzer, Über eine Frage von G. Hanani aus der additiven Zahlentheorie, J. Reine Angew. Math. 214(215) (1964), 392–394 (German). MR 161830, DOI 10.1515/crll.1964.214-215.392
- Paul Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291–300. MR 98702
- Paul Erdős, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 221–254. MR 177846
- P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
- Heini Halberstam and Klaus Friedrich Roth, Sequences, 2nd ed., Springer-Verlag, New York-Berlin, 1983. MR 687978
- W. Narkiewicz, Remarks on a conjecture of Hanani in additive number theory, Colloq. Math. 7 (1959/60), 161–165. MR 112876, DOI 10.4064/cm-7-2-161-165
- Imre Z. Ruzsa, Additive completion of lacunary sequences, Combinatorica 21 (2001), no. 2, 279–291. Paul Erdős and his mathematics (Budapest, 1999). MR 1832452, DOI 10.1007/s004930100025
- A. Sárközy and E. Szemerédi, On a problem in additive number theory, Acta Math. Hungar. 64 (1994), no. 3, 237–245. MR 1275641, DOI 10.1007/BF01874252
Bibliographic Information
- Jin-Hui Fang
- Affiliation: School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, People’s Republic of China
- Email: fangjinhui1114@163.com
- Yong-Gao Chen
- Affiliation: School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, People’s Republic of China
- MR Author ID: 304097
- Email: ygchen@njnu.edu.cn
- Received by editor(s): July 1, 2009
- Received by editor(s) in revised form: September 10, 2009
- Published electronically: February 5, 2010
- Additional Notes: This work was supported by the National Natural Science Foundation of China, Grant No. 10771103 and the Outstanding Graduate Dissertation Program of Nanjing Normal University, Grant No. 181200000213.
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 1923-1927
- MSC (2010): Primary 11B13, 11B34
- DOI: https://doi.org/10.1090/S0002-9939-10-10205-6
- MathSciNet review: 2596025