The Szlenk index of Orlicz sequence spaces
HTML articles powered by AMS MathViewer
- by Laetitia Borel-Mathurin
- Proc. Amer. Math. Soc. 138 (2010), 2043-2050
- DOI: https://doi.org/10.1090/S0002-9939-10-10213-5
- Published electronically: January 7, 2010
- PDF | Request permission
Abstract:
We provide explicit estimates of the Szlenk indices of Orlicz sequence spaces. Applications are given to uniform homeomorphisms between subspaces and quotients of Orlicz spaces.References
- Yoav Benyamini, The uniform classification of Banach spaces, Texas functional analysis seminar 1984–1985 (Austin, Tex.), Longhorn Notes, Univ. Texas Press, Austin, TX, 1985, pp. 15–38. MR 832247
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- Shutao Chen, Geometry of Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 356 (1996), 204. With a preface by Julian Musielak. MR 1410390
- Y. Dutrieux, Géométrie non linéraire des espaces de Banach, Ph.D. thesis, Université Paris 6, 2002.
- Sudipta Dutta and Alexandre Godard, Banach spaces with property $(M)$ and their Szlenk indices, Mediterr. J. Math. 5 (2008), no. 2, 211–220. MR 2427395, DOI 10.1007/s00009-008-0145-2
- G. Godefroy, N. J. Kalton, and G. Lancien, Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. 353 (2001), no. 10, 3895–3918. MR 1837213, DOI 10.1090/S0002-9947-01-02825-2
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- W. B. Johnson, J. Lindenstrauss, and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), no. 3, 430–470. MR 1392325, DOI 10.1007/BF02249259
- N. J. Kalton, $M$-ideals of compact operators, Illinois J. Math. 37 (1993), no. 1, 147–169. MR 1193134
- Nigel J. Kalton, The nonlinear geometry of Banach spaces, Rev. Mat. Complut. 21 (2008), no. 1, 7–60. MR 2408035, DOI 10.5209/rev_{R}EMA.2008.v21.n1.16426
- Nigel J. Kalton and Dirk Werner, Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178. MR 1324212, DOI 10.1515/crll.1995.461.137
- H. Knaust, E. Odell, and Th. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach spaces, Positivity 3 (1999), no. 2, 173–199. MR 1702641, DOI 10.1023/A:1009786603119
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
Bibliographic Information
- Laetitia Borel-Mathurin
- Affiliation: Institut de Mathématiques de Jussieu - Équipe d’Analyse Fonctionnelle, Université Pierre et Marie Curie, Boîte 186, 4 place Jussieu, 75252 Paris Cedex 05, France
- Email: borel@math.jussieu.fr
- Received by editor(s): June 3, 2009
- Received by editor(s) in revised form: September 10, 2009, and September 14, 2009
- Published electronically: January 7, 2010
- Communicated by: Nigel J. Kalton
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2043-2050
- MSC (2010): Primary 46B20, 46T99; Secondary 46B03, 46B45
- DOI: https://doi.org/10.1090/S0002-9939-10-10213-5
- MathSciNet review: 2596040