Jordan’s theorem for the diffeomorphism group of some manifolds
HTML articles powered by AMS MathViewer
- by Ignasi Mundet i Riera
- Proc. Amer. Math. Soc. 138 (2010), 2253-2262
- DOI: https://doi.org/10.1090/S0002-9939-10-10221-4
- Published electronically: February 12, 2010
- PDF | Request permission
Abstract:
Let $M$ be a compact connected $n$-dimensional smooth manifold admitting an unramified covering $\widetilde {M}\to M$ with cohomology classes $\alpha _1,\dots ,\alpha _n \in H^1(\widetilde {M};\mathbb {Z})$ satisfying $\alpha _1\cup \dots \cup \alpha _n\neq 0$. We prove that there exists some number $c$ such that: (1) any finite group of diffeomorphisms of $M$ contains an abelian subgroup of index at most $c$; (2) if $\chi (M)\neq 0$, then any finite group of diffeomorphisms of $M$ has at most $c$ elements. We also give a new and short proof of Jordan’s classical theorem for finite subgroups of $\mathrm {GL}(n,\mathbb {C})$, of which our result is an analogue for $\mathrm {Diff}(M)$.References
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
- William M. Boothby and Hsien-chung Wang, On the finite subgroups of connected Lie groups, Comment. Math. Helv. 39 (1965), 281–294. MR 180622, DOI 10.1007/BF02566955
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006. Reprint of the 1962 original. MR 2215618, DOI 10.1090/chel/356
- Harold Donnelly and Reinhard Schultz, Compact group actions and maps into aspherical manifolds, Topology 21 (1982), no. 4, 443–455. MR 670746, DOI 10.1016/0040-9383(82)90022-2
- Hershel M. Farkas and Irwin Kra, Riemann surfaces, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York-Berlin, 1980. MR 583745
- D. Fisher, Groups acting on manifolds: Around the Zimmer program, preprint, arXiv:0809.4849, to appear in Festschrift for R.J. Zimmer.
- Daniel H. Gottlieb, Kyung B. Lee, and Murad Özaydin, Compact group actions and maps into $K(\pi ,1)$-spaces, Trans. Amer. Math. Soc. 287 (1985), no. 1, 419–429. MR 766228, DOI 10.1090/S0002-9947-1985-0766228-2
- C. Jordan, Mémoire sur les équations différentielles linéaires à intégrale algébrique, J. Reine Angew. Math. 84 (1878), 89–215.
- Michael Larsen, How often is $84(g-1)$ achieved?, Israel J. Math. 126 (2001), 1–16. MR 1882031, DOI 10.1007/BF02784148
- Alexander Lubotzky, The mathematics of Boris Weisfeiler, Notices Amer. Math. Soc. 51 (2004), no. 1, 31–32. MR 2022673
- H. Minkowski, Zur Theorie der positiven quadratischen Formen, Crelle Journal für die reine und angewandte Mathematik, 101 (1887), 196–202. (See also Collected Works. I, 212–218, Chelsea Publishing Company, 1967.)
- Volker Puppe, Do manifolds have little symmetry?, J. Fixed Point Theory Appl. 2 (2007), no. 1, 85–96. MR 2336501, DOI 10.1007/s11784-007-0021-x
- Ryo Washiyama and Tsuyoshi Watabe, On the degree of symmetry of a certain manifold, J. Math. Soc. Japan 35 (1983), no. 1, 53–58. MR 679074, DOI 10.2969/jmsj/03510053
- Boris Weisfeiler, Post-classification version of Jordan’s theorem on finite linear groups, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 16, , Phys. Sci., 5278–5279. MR 758425, DOI 10.1073/pnas.81.16.5278
Bibliographic Information
- Ignasi Mundet i Riera
- Affiliation: Departament d’Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
- MR Author ID: 642261
- Email: ignasi.mundet@ub.edu
- Received by editor(s): March 4, 2009
- Received by editor(s) in revised form: October 12, 2009
- Published electronically: February 12, 2010
- Communicated by: Richard A. Wentworth
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2253-2262
- MSC (2010): Primary 57R50, 57S17
- DOI: https://doi.org/10.1090/S0002-9939-10-10221-4
- MathSciNet review: 2596066