Assouad-Nagata dimension of nilpotent groups with arbitrary left invariant metrics
HTML articles powered by AMS MathViewer
- by J. Higes
- Proc. Amer. Math. Soc. 138 (2010), 2235-2244
- DOI: https://doi.org/10.1090/S0002-9939-10-10240-8
- Published electronically: February 12, 2010
- PDF | Request permission
Abstract:
Suppose $G$ is a countable, not necessarily finitely generated, group. We show $G$ admits a proper, left invariant metric $d_G$ such that the Assouad-Nagata dimension of $(G,d_G)$ is infinite, provided the center of $G$ is not locally finite. As a corollary we solve two problems of A. Dranishnikov.References
- Patrice Assouad, Sur la distance de Nagata, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 1, 31–34 (French, with English summary). MR 651069
- G. Bell and A. Dranishnikov, On asymptotic dimension of groups acting on trees, Geom. Dedicata 103 (2004), 89–101. MR 2034954, DOI 10.1023/B:GEOM.0000013843.53884.77
- G. C. Bell, A. N. Dranishnikov, and J. E. Keesling, On a formula for the asymptotic dimension of free products, Fund. Math. 183 (2004), no. 1, 39–45. MR 2098148, DOI 10.4064/fm183-1-2
- G. C. Bell and A. N. Dranishnikov, A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Amer. Math. Soc. 358 (2006), no. 11, 4749–4764. MR 2231870, DOI 10.1090/S0002-9947-06-04088-8
- G. Bell, A. Dranishnikov, Asymptotic dimension, Topology and its Appl. 155 (2008), no. 12, 1265–1296.
- N. Brodskiy, J. Dydak, J. Higes, and A. Mitra, Dimension zero at all scales, Topology Appl. 154 (2007), no. 14, 2729–2740. MR 2340955, DOI 10.1016/j.topol.2007.05.006
- N. Brodskiy, J. Dydak, J. Higes, A. Mitra, Nagata-Assouad dimension via Lipschitz extension, Israel J. Math. 171 (2009), 405–423.
- N. Brodskiy, J. Dydak, M. Levin, A. Mitra, Hurewicz theorem for Assouad-Nagata dimension, J. Lond. Math. Soc. (2) 177 (2008), no. 3, 741–756.
- N. Brodskiy, J. Dydak, U. Lang, Assouad-Nagata dimension of wreath products of groups, preprint, math.MG/0611331v2.
- A. Dranishnikov, Open problems in asymptotic dimension theory, preprint, available at http://aimbri12.securesites.net/pggt.
- A. Dranishnikov and J. Smith, Asymptotic dimension of discrete groups, Fund. Math. 189 (2006), no. 1, 27–34. MR 2213160, DOI 10.4064/fm189-1-2
- A. N. Dranishnikov and J. Smith, On asymptotic Assouad-Nagata dimension, Topology Appl. 154 (2007), no. 4, 934–952. MR 2294641, DOI 10.1016/j.topol.2006.10.010
- A. Dranishnikov and M. Zarichnyi, Universal spaces for asymptotic dimension, Topology Appl. 140 (2004), no. 2-3, 203–225. MR 2074917, DOI 10.1016/j.topol.2003.07.009
- Cornelia Druţu, Quasi-isometry invariants and asymptotic cones, Internat. J. Algebra Comput. 12 (2002), no. 1-2, 99–135. International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000). MR 1902363, DOI 10.1142/S0218196702000948
- J. Dydak and J. Higes, Asymptotic cones and Assouad-Nagata dimension, Proc. Amer. Math. Soc. 136 (2008), no. 6, 2225–2233. MR 2383529, DOI 10.1090/S0002-9939-08-09149-1
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534
- J. Higes, Assouad-Nagata dimension of locally finite groups and asymptotic cones, preprint, math.MG0711.1512.
- Urs Lang and Thilo Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655. MR 2200122, DOI 10.1155/IMRN.2005.3625
- Piotr W. Nowak, On exactness and isoperimetric profiles of discrete groups, J. Funct. Anal. 243 (2007), no. 1, 323–344. MR 2291440, DOI 10.1016/j.jfa.2006.10.011
- D. Osin, Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not. 35 (2005), 2143–2161. MR 2181790, DOI 10.1155/IMRN.2005.2143
- John Roe, Hyperbolic groups have finite asymptotic dimension, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2489–2490. MR 2146189, DOI 10.1090/S0002-9939-05-08138-4
- Yehuda Shalom, Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math. 192 (2004), no. 2, 119–185. MR 2096453, DOI 10.1007/BF02392739
- J. Smith, On asymptotic dimension of countable abelian groups, Topology Appl. 153 (2006), no. 12, 2047–2054. MR 2237596, DOI 10.1016/j.topol.2005.07.011
- Justin Smith, The asymptotic dimension of the first Grigorchuk group is infinity, Rev. Mat. Complut. 20 (2007), no. 1, 119–121. MR 2310581, DOI 10.5209/rev_{R}EMA.2007.v20.n1.16546
- Kevin Whyte, Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture, Duke Math. J. 99 (1999), no. 1, 93–112. MR 1700742, DOI 10.1215/S0012-7094-99-09904-0
Bibliographic Information
- J. Higes
- Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Email: josemhiges@yahoo.es
- Received by editor(s): June 11, 2009
- Received by editor(s) in revised form: October 3, 2009
- Published electronically: February 12, 2010
- Additional Notes: The author is supported by Grant AP2004-2494 from the Ministerio de Educación y Ciencia, Spain, and project MEC, MTM2006-0825. He also thanks Jerzy Dydak and N. Brodskyi for helpful comments and support.
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2235-2244
- MSC (2000): Primary 54F45; Secondary 55M10, 54C65
- DOI: https://doi.org/10.1090/S0002-9939-10-10240-8
- MathSciNet review: 2596064