AN ALEKSANDROV TYPE ESTIMATE
FOR α-CONVEX FUNCTIONS

CRISTIAN E. GUTIÉRREZ AND FEDERICO TOURNIER

(Communicated by Matthew J. Gursky)

Abstract. In the context of α-convexity, using an operator similar to the Monge-Ampère operator based on the notion of normal mapping, we estimate the difference between a function u and the solution of the homogeneous problem U in terms of the measure of the normal mapping of u and a power of the distance to the boundary.

1. Introduction

In the theory of the Monge-Ampère equation the following estimate due to Aleksandrov is of great importance: if u is convex in Ω, an open bounded convex subset of \mathbb{R}^n, and $u \in C(\overline{\Omega})$ with $u = 0$ on $\partial \Omega$, then

$$|u(x)|^n \leq C \operatorname{dist}(x, \partial \Omega) \operatorname{diam}(\Omega)^{n-1} |Du(\Omega)|,$$

for all $x \in \Omega$, where

$$Du(\Omega) = \{ p \in \mathbb{R}^n : \exists \overline{x} \in \Omega \text{ such that } u(x) \geq u(\overline{x}) + p \cdot (x - \overline{x}) \forall x \in \Omega \},$$

with a constant C depending only on n and independent of u. The estimate plays a crucial role in the theory of sections of solutions to the Monge-Ampère equation and consequently in regularity theory; see [Caf90], [Gut01], [GH00]. More generally, if u is not necessarily convex but satisfies $u(x_0) \leq 0$ at some $x_0 \in \Omega$, then (1.1) holds at $x = x_0$. Indeed, taking v to be the convex function defining a cone with base in $\partial \Omega$ and vertex at the point $(x_0, u(x_0))$, and following the argument in [Gut01, Lemma 1.4.1], we obtain $Dv(x_0) \subset Du(\Omega)$. Then the proof of [Gut01, Theorem 1.4.2] applies in this case.

The purpose of this paper is to prove this estimate in the context of α-convex functions, $\alpha > 1$; see Definition 2.3. In the language of optimal mass transportation these are functions that are convex with respect to the cost function $c(x,y) = |x-y|^\alpha$. In our estimate, the subdifferential $Du(\Omega)$ on the right hand side of (1.1) is replaced by the quantity

$$F_u(\Omega) = \{ y \in \mathbb{R}^n : \exists \overline{x} \in \Omega \text{ such that } u(x) \geq u(\overline{x}) + |\overline{x} - y|^\alpha - |x - y|^\alpha \forall x \in \Omega \},$$

and $|u(x)|$ on left hand side of (1.1) gets replaced by $U(x) - u(x)$, where U is the solution of the homogeneous problem $|F_U(\Omega)| = 0$ with $U = 0$ on $\partial \Omega$. The case $\alpha = 2$ is related to standard convexity since $F_u(x) = x + 2Du(x)$; see the
end of the proof of Lemma 3.4. The structure of the set F_u is related to the condition (A3w) introduced in [TW09] for general cost functions, and it is proven there, in Example 4, that $|x - y|^{2\alpha}$ satisfies this condition only when $\alpha = 2$ or when $-2 \leq \alpha < 1$. Consequently, from the results of Loeper [Loe09] Proposition 2.11 and Theorem 3.1, the set $F_u(\bar{x})$ defined in Definition 2.1 is in general not connected. We refer to the paper [GN07] for results on Monge-Ampère type equations arising in optimal mass transportation for general cost functions and properties of the subdifferential F_u. Optimal mass transportation has recently become a very active area of research; we mention, in particular, the fundamental work of Ma, Trudinger and Wang [MTW05], for smooth cost functions. For further references see [Vil07].

The main estimate proved in this paper is the following:

Let $\alpha > 1$ and let Ω be an open, bounded, convex domain in \mathbb{R}^n. If $u \in C(\Omega)$ with $u = 0$ on $\partial \Omega$ and such that $0 \leq u \leq U$ in Ω, then for all $x \in \Omega$ we have

$$((U(x) - u(x))^n \leq C(\text{diam}(\Omega))^{\alpha ^2} |x|^{2n - 2\alpha} |F_u(\Omega)|$$

whenever $n(2\alpha - 3) - 1 \geq 0,$ and

$$((U(x) - u(x))^n \leq C(\text{diam}(\Omega))^{\alpha ^2} |F_u(\Omega)|$$

whenever $n(2\alpha - 3) - 1 \leq 0$. The constant C depends only on n and α, and U is the solution of the homogeneous problem as stated above. Depending on the value of α, the hypothesis $u \geq 0$ is essential for the validity of the estimates. Indeed, if $\alpha > 2n/(n - 1)$ and $u < 0$, then it is not possible to give an estimate of $|u|$ by any positive power of the distance; see Remark 5.3. However, if $\alpha \leq 2n/(n - 1)$ and $u < 0$, then such an estimate holds; see Theorem 5.2.

The paper is organized as follows. Section 2 contains preliminary results. In Section 3 we solve the homogeneous Dirichlet problem giving an explicit characterization of the solution. In Section 4 we find the solution u to the Dirichlet problem when the right hand side is a multiple β of the Dirac delta function at a point $\bar{x} \in \Omega$, and we estimate the size of β in terms of $U(\bar{x}) - u(\bar{x})$ and $\text{dist}(\bar{x}, \partial \Omega)$. The whole Section 4 is devoted to proving Theorem 4.1 and Lemma 4.3 and the main estimates are finally proved in Section 4.

2. Definitions and Preliminary Results

Let $\Omega \subset \mathbb{R}^n$ be a bounded, open, convex set, and $\alpha > 1$.

Definition 2.1. Let $u : \Omega \to \mathbb{R}$ and $\bar{x} \in \Omega$. We define

$$F_u(\bar{x}) := \{y \in \mathbb{R}^n : u(x) \geq u(\bar{x}) + |x - y|^{\alpha} - |x|^{\alpha} \forall x \in \Omega\}.$$

If $E \subseteq \Omega$, we define $F_u(E) = \bigcup_{x \in E} F_u(x)$.

Remark 2.2. If $u \in C(\overline{\Omega})$ and $\bar{x} \in \partial \Omega$, then we say that $y \in F_u(\bar{x})$ if there exists $\bar{x} \in \Omega$ such that $y \in F_u(\bar{x})$ and $u(x) \geq u(\bar{x}) + |x - y|^{\alpha} - |x|^{\alpha}$ for all $x \in \Omega$.

Definition 2.3. We say that $u : \Omega \to R$ is α-convex in Ω if $F_u(x) \neq \emptyset$, $\forall x \in \Omega$.

Lemma 2.4. If $u : \Omega \to R$ is α-convex in Ω, then u is locally Lipschitz continuous in Ω.

Proof. First we check the boundedness of u. That u is bounded below is trivial. We show that u is locally bounded above in Ω. Let $K \subseteq \Omega$ be compact and suppose there exist $x_0 \in K$ and $\{x_n\} \subset K$ with $x_n \to x_0$ and $u(x_n) \to +\infty$. If
Indeed, the function $u(x) = u(x_n) + |x_n - y_n|^\alpha - |x - y_n|^\alpha \forall x \in \Omega$. If $|y_n| \leq M$, then clearly $\lim_{n \to \infty} u(x_n) + |x_n - y_n|^\alpha - |x - y_n|^\alpha = +\infty$ for each $x \in \Omega$ (passing through a subsequence if necessary) which yields $u(x) = +\infty$ for $x \in \Omega$. So, we can assume that $|y_n| \to +\infty$. Let $I = \bigcup_{k=1}^{\infty} \cap_{n=k}^{\infty} B(x_n - y_n)(y_n)$. If $x \in I$, then $\lim_{n \to \infty} u(x_n) + |x_n - y_n|^\alpha - |x - y_n|^\alpha = +\infty$ and so $I \cap \Omega = \emptyset$.

Letting $\xi_n = \frac{y_n - x_n}{|y_n - x_n|}$, we may assume that $\xi_n \to e_1$. Consider the cone $C = \{x : e_1 \cdot \left(\frac{x-x_0}{|x-x_0|}\right) \geq \delta\}$. We claim that $C \subset I$. If we let $x \in C$, there exists N such that $\xi_n \cdot \left(\frac{x-x_n}{|x-x_n|}\right) \geq \frac{\delta}{2}$ for all $n \geq N$. Since $|x_n - y_n| \to \infty$, there exists N' such that $\frac{\delta}{2} |x - x_n| \leq \frac{\delta}{2} \text{diam}(\Omega) \leq |x_n - y_n|$ for all $n \geq N'$. Thus, $\frac{\delta}{2} |x_n - y_n| \leq |x - x_n| \leq \frac{\delta}{2} |x_n - y_n| |x - x_n|$ for all n sufficiently large and the claim is proved. Since $x_0 \in \Omega$ there exists $x' \in \Omega \cap C$, and therefore $x' \in \Omega \cap I$, a contradiction. Therefore, u is bounded on compact subsets of Ω.

We next show that u is locally Lipschitz. Let B be a ball with $2B \Subset \Omega$. Then we show first that the set $F_u(B)$ is bounded. Otherwise, there exist $y_n \in F_u(x_n)$, with $x_n \in B$ and $|y_n| \to \infty$. Since u is bounded above in $2B$ and bounded below in Ω, we get that $|x_n - y_n|^\alpha - |x - y_n|^\alpha \leq M$ for all $x \in 2B \Subset \Omega$. Let $x = x_n + \beta \xi_n$, with $\xi_n = \frac{y_n - x_n}{|y_n - x_n|}$. We have $x \in 2B$ for β small, and therefore $|x_n - y_n|^\alpha - |x - y_n|^\alpha = |x_n - y_n|^\alpha - |x_n + \beta \xi_n - y_n|^\alpha = \alpha \beta |x_n + \beta \xi_n - y_n|^\alpha - |x_n - y_n|^\alpha$ for some $0 < \beta < \beta$ from the mean value theorem. But the last expression tends to $+\infty$ as $n \to \infty$, which yields a contradiction. Finally, let $B \Subset \Omega$ and let $x_0, x_1 \in B$ and $y_0 \in F_u(x_0), y_1 \in F_u(x_1)$. Then $u(x) \geq u(x_0) + |x_0 - y_0|^\alpha - |x - y_0|^\alpha$ and $u(x) \geq u(x_1) + |x_1 - y_1|^\alpha - |x - y_1|^\alpha \forall x \in \Omega$. Thus, $|x_0 - y_0|^\alpha - |x_0 - y_0|^\alpha \leq u(x_1) - u(x_0) \leq |x_0 - y_0|^\alpha - |x_1 - y_1|^\alpha$. Again from the mean value theorem it follows that $\alpha |x - y_0|^\alpha - \beta(x - x_0) \leq u(x_1) - u(x_0) \leq |x_0 - y_0|^\alpha - |x_1 - y_1|^\alpha$. Consequently, $-\alpha |x - y_0|^\alpha - |x_0 - x_1| \leq u(x_1) - u(x_0) \leq \alpha |x - y_1|^\alpha |x_0 - x_1|$ and the Lipschitz continuity of u in B follows.

Remark 2.5. If u is α-convex in Ω, then

$$\{(y \in \mathbb{R}^n : y \in F_u(x_1) \cap F_u(x_2), x_1 \neq x_2 \in \Omega)\} = 0.\)$$

Indeed, the function $u^*(z) = \inf_{x \in \Omega} u(x) + |x - z|^\alpha$ is locally Lipschitz in \mathbb{R}^n. Suppose $y_1 \in F_u(x_1)$, where $x_1 \in \Omega$. Then $u^*(z) \leq u(x_1) + |x_1 - y_1|^\alpha = u(x_1) + |x_1 - y_1|^\alpha - |x_1 - y_1|^\alpha + |x_1 - z|^\alpha = u^*(y_1) - |x_1 - y_1|^\alpha + |x_1 - z|^\alpha, \forall z \in \mathbb{R}^n$. Therefore, we see that if $y \in F_u(x_1) \cap F_u(x_2)$ for some $x_1 \neq x_2 \in \Omega$, then u^* cannot be differentiable at y. This proves the remark.

Remark 2.6. The conclusion in the previous remark also holds if $u \in C(\overline{\Omega})$ is α-convex and the y's are taken so that $y \in F_u(x_1) \cap F_u(x_2)$, where $x_1 \in \Omega$ and $x_2 \in \partial\Omega$.

For each $y_0 \in \Omega$ consider the set

$$A_{y_0} = \{x \in \partial\Omega : \text{dist}(y_0, \partial\Omega) = |y_0 - x|\}.\)$$

We have the following lemma, which will be used in the proof of Theorem 3.1.
Lemma 2.7. For each $y_0 \in \Omega$ and for each $\xi \in \mathbb{R}^n$ with $|\xi| = 1$, there exists $\bar{x} \in A_{y_0}$, a sequence $y_k = y_0 + \delta_k \xi$ with $\delta_k > 0$ and $\delta_k \to 0$, and $x_k \in A_{y_k}$ such that $x_k \to \bar{x}$.

Proof. For each k, let $x_k \in A_{y_k} + \frac{1}{k} \xi$ and since $\{x_k\}$ is a bounded sequence, passing through a subsequence, we can assume $x_k \to \bar{x} \in \partial \Omega$. Then $\text{dist}(y_0, \partial \Omega) = \lim_{k \to \infty} \text{dist}(y_0 + \frac{1}{k} \xi, \partial \Omega) = \lim_{k \to \infty} |y_0 + \frac{1}{k} \xi - x_k| = |y_0 - \bar{x}|$, i.e. $\bar{x} \in A_{y_0}$.\[\square\]

3. Homogeneous Dirichlet problem

In this section, we solve the Dirichlet problem with zero boundary data and give a characterization of the solution. This problem was considered in [GN07] for general cost functions, but in our case we need to have a more precise characterization of the solution; see [GN07], Theorem 6.7.

Theorem 3.1. Let Ω be a bounded, open, convex domain in \mathbb{R}^n. Let $\alpha > 1$. Given $y \in \mathbb{R}^n$, let $v_{\lambda, y}(x) = \lambda - |x - y|^{\alpha}$ ($v_{\lambda, y}$ is α-convex in \mathbb{R}^n) and let

$$U(x) = \sup \{v_{\lambda, y}(x) : v_{\lambda, y} \leq 0 \text{ on } \partial \Omega\}.$$

We then have:

1. U is α-convex in Ω;
2. $U \in C(\overline{\Omega})$ and $U = 0$ on $\partial \Omega$;
3. $|F_U| = 0$;
4. $U(x) = \sup \{\text{dist}^\alpha(y, \partial \Omega) - |x - y|^{\alpha} : y \in \Omega\}$;
5. if $U(x_0) = \text{dist}^\alpha(y_0, \partial \Omega) - |x_0 - y_0|^{\alpha}$, then $x_0 \in A_{y_0}$ with

$$\Lambda_{y_0} = \{x \in \Omega : \text{for each } \xi \text{ with } |\xi| = 1 \text{ there exists } \bar{x} \in A_{y_0} \text{ such that}$$

$$(|\bar{x} - y_0|^{\alpha-2}(y_0 - \bar{x}) - |x - y_0|^{\alpha-2}(y_0 - x)) \cdot \xi \leq 0\},$$

where the set A_{y_0} is defined in (2.3).

Proof. 1. To define U it is enough to consider the set of functions $v_{\lambda, y}$ with $y \in \Omega$. Because if $y \notin \Omega$, and $v_{\lambda, y}(x) = \lambda - |x - y|^{\alpha}$ satisfies $v_{\lambda, y} \leq 0$ on $\partial \Omega$, then $v_{\lambda, y} \leq 0$ in Ω. While if $y \in \Omega$, then $v(x) = \text{dist}^\alpha(y, \partial \Omega) - |x - y|^{\alpha}$ satisfies $v \leq 0$ on $\partial \Omega$, and hence $U(x) \geq v(x) \forall x \in \Omega$; in particular,

$$(3.1) \quad U(y) \geq \text{dist}^\alpha(y, \partial \Omega) \forall y \in \Omega.$$

Let $x_0 \in \Omega$. From the definition of U, $U(x_0) = \lim_{n \to \infty} \lambda_n - |x_0 - y_n|^{\alpha} = \lim_{n \to \infty} v_n(x_0)$ with $v_n(x) = \lambda_n - |x - y_n|^{\alpha}$. Since $y_n \to y_0$, we may assume $y_n \to y_0 \in \overline{\Omega}$, and so also $\lambda_n \to \lambda_0$. Thus, $U(x_0) = \lambda_0 - |x_0 - y_0|^{\alpha}$ and $v_n \to v_0$ uniformly in $\overline{\Omega}$ where $v_0(x) = \lambda_0 - |x - y_0|^{\alpha}$. It follows that $v_0 \leq 0$ on $\partial \Omega$ and since $v_0(x_0) = U(x_0) \geq \text{dist}^\alpha(x_0, \partial \Omega) > 0$, we have $y_0 \in \Omega$. Since $U \geq v_n$, it follows that $U \geq v_0$ in Ω and therefore $y_0 \in F_U(x_0)$, so U is α-convex.

2. Since U is α-convex in Ω, from Lemma 2.4, U is continuous in Ω. We show that U is continuous up to the boundary. Fix $\bar{x} \in \partial \Omega$ and let $\eta(\bar{x})$ be the unit inner normal to some supporting plane to $\partial \Omega$ at \bar{x}, and let $W(x) = 2\text{diam}(\Omega)^{\alpha-1}(|x - \bar{x}, \eta(\bar{x}))$. Let $v_{\lambda, y}(x) = \lambda - |x - y|^{\alpha}$ with $v_{\lambda, y} \leq 0$ on $\partial \Omega$. Since $|D(W - v_{\lambda, y})(x)| > 0$ for $x \in \Omega$ and $W - v_{\lambda, y} \geq 0$ on $\partial \Omega$, it follows that $W - v_{\lambda, y} \geq 0$ in Ω. Therefore $V(x) \geq U(x)$ for $x \in \Omega$. This together with (3.1) yields that $U \in C(\overline{\Omega})$ and $U = 0$ on $\partial \Omega$.

3. Let $y \in F_U(\bar{x})$ for some $\bar{x} \in \Omega$, so $U(\bar{x}) \geq U(\bar{x}) + |\bar{x} - y|^{\alpha} - |x - y|^{\alpha}$ for all $x \in \Omega$ and we claim that there exists $\bar{x} \in \partial \Omega$ such that $U(\bar{x}) + |\bar{x} - y|^{\alpha} - |x - y|^{\alpha} = 0$.\[\square\]
Otherwise, since $U = 0$ on $\partial \Omega$, we must have that $U(\bar{x}) + |\bar{x} - y|^\alpha - |x - y|^\alpha < 0$ for all $x \in \partial \Omega$, and hence, there exists $\epsilon > 0$ such that $U(\bar{x}) + |\bar{x} - y|^\alpha - |x - y|^\alpha + \epsilon < 0$ for all $x \in \partial \Omega$. Then by the definition of U, we must have $U(x) \geq U(\bar{x}) + |\bar{x} - y|^\alpha - |x - y|^\alpha + \epsilon$ for all $x \in \Omega$, and in particular, $U(\bar{x}) \geq U(\bar{x}) + \epsilon$, a contradiction, and the claim is proved. Therefore, there exists $\hat{x} \in \partial \Omega$ such that $U(\hat{x}) + |\hat{x} - y|^\alpha - |x - y|^\alpha = 0$ and since $U(\hat{x}) = 0$ this clearly implies that $y \in F_U(\hat{x})$. We have then proved that $F_U(\hat{\Omega}) \subseteq \{y : \exists x_1 \in \Omega, x_2 \in \partial \Omega \text{ such that } y \in F_U(x_1) \cap F_U(x_2)\}$, which implies that $|F_U(\Omega)| = 0$.

We remark that if $\alpha = 2$, we have that $U(x) = |\bar{x} - y|^2 - |x - y|^2$ for all $x \in [\bar{x}, \tilde{x}]$, and hence $y \in F_U(x)$ for all $x \in [\tilde{x}, \bar{x}]$, where $\tilde{x} \in \partial \Omega$ is as above.

(4) Let $\bar{x} \in \Omega$ be arbitrary and let $\tilde{y} \in F_U(\bar{x})$. From the claim in (3), we conclude that $U(x) \geq |\bar{x} - y|^\alpha - |x - \tilde{y}|^\alpha$ for all $x \in \Omega$ with equality at \bar{x} and at $\tilde{x} \in \partial \Omega$. Hence, $|x - \tilde{y}|^\alpha \geq |\bar{x} - \tilde{y}|^\alpha$, for all $x \in \partial \Omega$. This implies that $|\bar{x} - \tilde{y}|^\alpha = \text{dist}^\alpha(\tilde{y}, \partial \Omega)$ and so $U(x) \geq \text{dist}^\alpha(\tilde{y}, \partial \Omega) - |x - \tilde{y}|^\alpha$ for all $x \in \Omega$ with equality at \bar{x}. Therefore, we get $U(\bar{x}) = \text{dist}^\alpha(\tilde{y}, \partial \Omega) - |\bar{x} - \tilde{y}|^\alpha \leq \text{dist}^\alpha(y, \partial \Omega) - |\bar{x} - y|^\alpha : y \in \Omega$.

The reverse inequality follows by noting that for any y fixed in Ω, the function $v(x) = \text{dist}^\alpha(y, \partial \Omega) - |x - y|^\alpha$ satisfies $v \leq 0$ on $\partial \Omega$, v α-convex, and so $U \geq v$.

(5) Suppose $U(x_0) = \text{dist}^\alpha(y_0, \partial \Omega) - |x_0 - y_0|^\alpha$, and we will show $x_0 \in \Lambda_{y_0}$. Otherwise, there exists $\tilde{\xi}$ with $|\tilde{\xi}| = 1$ such that for all $x \in A_{y_0}$,

$$
(3.2) \quad \langle |x - y_0|^{\alpha - 2}(y_0 - x) - |x_0 - y_0|^{\alpha - 2}(y_0 - x_0), \tilde{\xi} \rangle > 0.
$$

From Lemma 2.7 applied to $\tilde{\xi}$, we know that there exists $\bar{x} \in A_{y_0}$ and $\bar{\delta}_k \to 0$, $\bar{\delta}_k > 0$, and $x_k \in A_{y_0 + \bar{\delta}_k \tilde{\xi}}$ such that $x_k \to \bar{x}$. Using $x = \bar{x}$ in equation (3.2), by definition of U and the fact that $x_k \in A_{y_0 + \bar{\delta}_k \tilde{\xi}}$, we have

$$
(3.3) \quad 0 \geq |x_k - (y_0 + \bar{\delta}_k \tilde{\xi})|^\alpha - |x_0 - (y_0 + \bar{\delta}_k \tilde{\xi})|^\alpha - U(x_0)
\quad = |\bar{\delta}_k \tilde{\xi} - (x_k - y_0)|^\alpha - |\bar{x} - y_0|^\alpha - (|\bar{\delta}_k \tilde{\xi} - (x_k - y_0)|^\alpha - |x_0 - y_0|^\alpha)
\quad = |x_k - y_0|^\alpha - |\bar{x} - y_0|^\alpha - \alpha \bar{\delta}_k \left(|\bar{\delta}_k \tilde{\xi} - (x_k - y_0)|^{\alpha - 2} (\bar{\delta}_k \tilde{\xi} + y_0 - x_k, \tilde{\xi}) - |\bar{\delta}_k \tilde{\xi} - (x_0 - y_0)|^{\alpha - 2} (\bar{\delta}_k \tilde{\xi} + y_0 - x_0, \tilde{\xi}) \right),
$$

by the mean value theorem for some $0 < \bar{\delta}_k, \bar{\delta}_k < \delta_k$. Notice that $\lim_{\delta_k \to 0} \{\ldots\} = \langle |\bar{x} - y_0|^{\alpha - 2}(y_0 - x) - |x_0 - y_0|^{\alpha - 2}(y_0 - x_0), \tilde{\xi} \rangle > 0$ and since $x_k \in \partial \Omega$ and $\bar{x} \in A_{y_0}$ we also have $|x_k - y_0|^\alpha - |\bar{x} - y_0|^\alpha \geq 0$ and hence, we conclude that for δ_k small enough, 3.3 is positive, which is a contradiction, thus proving the claim. This completes the proof. \hfill \Box

Remark 3.2. We analyze in passing the case $\alpha = 2$. In this case, $\Lambda_{y_0} = \{x : \forall \xi, |\xi| = 1, \exists \bar{x} \in A_{y_0} \text{ such that } (x - \bar{x}, \xi) \leq 0\} = \text{convex hull}(A_{y_0})$ and we have the following conclusions:

If $x_0 \in \Omega$ and $U(x_0) = \text{dist}^2(y_0, \partial \Omega) - |x_0 - y_0|^2$, then $\Lambda_{y_0} = \{x \in \partial \Omega : \text{dist}(y_0, \partial \Omega) = |y_0 - x|\}$ is not a singleton. Moreover, if $U(x_0) = \text{dist}^2(y_0, \partial \Omega) - |x_0 - y_0|^2 = |x - y_0|^2 - |x_0 - y_0|^2$, where $\bar{x} \in A_{y_0}$, then $U(x) = |x - y_0|^2 - |x - y_0|^2$ for all $x \in \text{convex hull}(A_{y_0})$. Also, $x_0 \in B_{|y_0 - \bar{x}|/2}$ (3.3) and $|x_0 - \bar{x}|^2 \leq U(x_0)$. This can be realized by taking $\xi = x_0 - y_0$ in the definition of Λ_{y_0} and \bar{x} to be the corresponding point in A_{y_0}.

Now, let us look at the case $\alpha > 1$ and consider the set Λ_{y_0}. Set $p_{y_0} = (x - y_0)|x - y_0|^{-\alpha - 2}$. One can check that $\Lambda_{y_0} = p_{y_0}^{-1}(\text{convex hull}(p_{y_0}(A_{y_0})))$.

Let $\xi = x_0 - y_0$. Then there exists $\bar{x} \in A_{y_0}$ such that $\langle |\bar{x} - y_0|^{\alpha - 2}(y_0 - \bar{x}) - |x_0 - y_0|^{\alpha - 2}(y_0 - x_0), x_0 - y_0 \rangle \leq 0$, which gives $|x_0 - y_0|^\alpha \leq |\bar{x} - y_0|^{\alpha - 2}(\bar{x} - y_0, x_0 - y_0)$. Taking for instance $y_0 = 0$ and \bar{x} along e_1, we see that if $x_0 \in A_{y_0}$, then x_0 is on the set obtained by rotating the polar curve $r = R(\cos \theta)^{\alpha-2}$ around the e_1-axis, where $R = |\bar{x}|$.

3.1. Regularity of U. We prove the following theorem.

Theorem 3.3. The function U in Theorem 3.1 is $C^1(\Omega)$.

We first prove a lemma.

Lemma 3.4. Let u be α-convex in Ω. Then $u \in C^1(\Omega)$ if and only if $F_u(x)$ is a singleton for each $x \in \Omega$.

Proof. It is clear that if for some $x \in \Omega$, $F_u(x)$ has more than one point, then u is not differentiable at x.

To prove the other implication, fix $\bar{x} \in \Omega$, and let $\{\tilde{y}\} = F_u(\bar{x})$. We claim first that if $x_n \to \bar{x}$, and $\{y_n\} = F_u(x_n)$, then $y_n \to \tilde{y}$. If not, then there exists $\epsilon > 0$ and infinitely many points $y_n \not\in B_{\epsilon}(\tilde{y})$. Since the sequence $\{y_n\}$ is bounded, extracting a subsequence we may assume $y_{n_k} \to \tilde{y}$. But then it follows that $\tilde{y} \in F_u(\bar{x})$ and hence by assumption that $\tilde{y} = y$, and this is a contradiction, proving the claim.

Using this claim we show that u has first-order partial derivatives. Without loss of generality, we can assume $u(0) = 0$ and $\{0\} = F_u(0)$, so $u(x) \geq -|x|^\alpha$ for all $x \in \Omega$. Suppose $\left.\frac{\partial u}{\partial y_1}\right|_{y_1 = 0}$ does not exist. For $t > 0$ we have $\frac{u(te_1)}{t} \geq -t^{\alpha-1}$ and hence $\liminf_{t \to 0^+} \frac{u(te_1)}{t} \geq 0$. Suppose $\limsup_{t \to 0^+} \frac{u(te_1)}{t} = a > 0$. Let $t_n \to 0^+$ such that $\frac{u(te_n)}{t_n} \geq a$ and let $\{y_n\} = F_u(te_n)$. It follows by the claim that $y_n \to 0$, and we have $u(x) \geq u(t_n e_1) + |t_n e_1 - y_n|^\alpha - |x - y_n|^\alpha$ for all n and for all $x \in \Omega$. In particular, $0 = u(0) \geq u(t_n e_1) + |t_n e_1 - y_n|^\alpha - |y_n|^\alpha = u(t_n e_1) + |\xi - y_n|^\alpha - |\xi - y_n, t_n e_1|^\alpha$ for some $\xi \in [0, t_n e_1]$. Dividing by t_n we get $0 \geq \frac{u(te_n)}{t_n} + |\xi - y_n|^\alpha - |\xi - y_n, e_1|^\alpha \geq a + |\xi - y_n|^\alpha - |\xi - y_n, e_1|^\alpha \geq a$ for n large enough, a contradiction. Exactly the same argument works for $t < 0$, and hence we conclude that $\frac{\partial u}{\partial y_1}(0)$ exists. By the claim once again we can also conclude that the partial derivatives are continuous because if $y \in F_u(x)$, then $y = x + a(1/\alpha - 1)|Du(x)|^{1/(\alpha - 1)}Du(x)$.

Proof of Theorem 3.3. Let us recall that Ω is convex and $U(x) = \sup\{\text{dist}^\alpha(y, \partial \Omega) + |x - y|^\alpha : y \in \Omega\}$. Fix $x_0 \in \Omega$. We show that $F_{U}(x_0)$ is a singleton.

Set $t = U(x_0) > 0$ and suppose by contradiction that $y_1, y_2 \in F_U(x_0)$ with $y_1 \neq y_2$. It follows that $\text{dist}^\alpha(y_i, \partial \Omega) - |x_0 - y_i|^\alpha = t$ for $i = 1, 2$. We also have that $B_{\frac{1}{\alpha}(|x_0 - y_i|^\alpha + t)}(y_i) \subseteq \Omega$ for $i = 1, 2$ and $\partial B_1 \cap \partial B_2 \neq \emptyset$.

Let Λ be the convex hull of $B_1 \cup B_2$ and let T be a supporting hyperplane to Λ that touches Λ at more than one point. Set $\Phi(y) = \text{dist}^\alpha(y, T) - |x_0 - y|^\alpha$. We will prove in Lemma 4.2 that the set $S = \{y : \Phi(y) \geq t\}$ is strictly convex. Since $\Phi(y_i) = t$ for $i = 1, 2$ it follows that $[y_1, y_2] \subseteq S$. Then, for $y \in [y_1, y_2]$ we have $\text{dist}^\alpha(y, \partial \Omega) - |x_0 - y|^\alpha \geq \text{dist}^\alpha(y, \Lambda) - |x_0 - y|^\alpha = \text{dist}^\alpha(y, T) - |x_0 - y|^\alpha \geq \Phi(y) > t$, and this is a contradiction with the definition of U since $U(x_0) = t$. ☐
4. Nonhomogeneous Dirichlet problem

Let \(\alpha > 1 \) and let \(U \) be the solution of \(|F_U(\Omega)| = 0, \) \(U = 0 \) on \(\partial \Omega \) from the previous section. We shall prove the following theorem; see [GN07, Lemma 6.19].

Theorem 4.1. Let \(x_0 \in \Omega \) and \(t < U(x_0) \) and define

\[
(4.1) \quad u(x) = \sup \{v_{\lambda,y}(x) = \lambda - |x-y|^\alpha : v_{\lambda,y} \leq 0 \text{ on } \partial \Omega \text{ and } v_{\lambda,y}(x_0) \leq t\}.
\]

Then \(u \in C(\Omega), \) \(u = 0 \) on \(\partial \Omega, \) \(u(x_0) = t, \) \(u \) is \(\alpha \)-convex and satisfies the equation \(F_u = \beta \delta_{x_0}, \) for some \(\beta \geq 0. \) Moreover, when \(t \geq 0 \) we have the following estimates for \(\beta: \)

(a) Suppose \(1 < \alpha \leq 2. \) If \(n(3-2\alpha) + 1 \geq 0, \) then

\[
(4.2) \quad \beta = |F_u(x_0)| \geq C \frac{(U(x_0) - t)^n}{\text{dist}(x_0, \partial \Omega)^n(\alpha-1)};
\]

and if \(n(3-2\alpha) + 1 < 0, \) then

\[
(4.3) \quad \beta = |F_u(x_0)| \geq C \frac{(U(x_0) - t)^n}{\text{dist}(x_0, \partial \Omega)^n(\alpha-1)} \frac{\alpha n + 1}{\alpha n - 2} \frac{\text{diam}(\Omega)^{\alpha n - 1}}{2}.
\]

(b) If on the other hand \(\alpha \geq 2, \) then we have

\[
(4.4) \quad \beta = |F_u(x_0)| \geq C \frac{(U(x_0) - t)^n}{\text{dist}(x_0, \partial \Omega)^n(\alpha-1)} \frac{\alpha n + 1}{\alpha n - 2} \frac{\text{diam}(\Omega)^{\alpha n - 1}}{2}.
\]

Here \(C \) is a positive constant depending only on \(\alpha \) and \(n. \)

Finally, for \(\alpha > 1 \) and \(t \geq 0, \) the set \(F_u(x_0) \) is convex.

Proof. The set of functions \(v_{\lambda,y} \) is clearly nonempty, so \(u \) is well defined and also \(u(x_0) \leq t. \) We will prove that \(u(x_0) \leq t. \) Let’s assume first that \(t \geq 0. \) Since \(t < U(x_0), \) there exists \(y_0 \in \Omega \) such that \(t < \text{dist}(y_0, \partial \Omega) - |x_0 - y_0|^\alpha. \) Since the function \(\Psi(z) = \text{dist}^\alpha(y_0, \partial \Omega) - |x_0 - z|^\alpha \) is continuous and \(\Psi(y_0) > t \) and \(\Psi \leq 0 \) on \(\partial \Omega, \) this implies that there exists \(z_0 \in \Omega \) such that \(\Psi(z_0) = t. \) Letting \(v(x) = \text{dist}^\alpha(z_0, \partial \Omega) - |x - z_0|^\alpha, \) then \(v \leq 0 \) on \(\partial \Omega \) and \(v(x_0) = t; \) this implies \(u(x_0) \geq t. \) If \(t < 0, \) then we can take \(u_{x_0} \) in the definition of \(u. \) Therefore \(u(x_0) = t. \)

We prove that \(u \) is \(\alpha \)-convex in \(\Omega. \) Let \(\bar{z} \in \Omega. \) We first claim the supremum is attained; i.e., there exists \(\bar{\lambda} \in \mathbb{R} \) and \(\bar{y} \in \mathbb{R}^n \) such that \(u(\bar{z}) = \bar{\lambda} - |\bar{z} - \bar{y}|^\alpha, \) where \(v_{\bar{\lambda},\bar{y}} \) satisfies \(v_{\bar{\lambda},\bar{y}} \leq 0 \) on \(\partial \Omega \) and \(v_{\bar{\lambda},\bar{y}}(x_0) \leq t. \) Assuming the claim we get that \(u(x) \geq \bar{\lambda} - |x - \bar{y}|^\alpha = u(\bar{z}) + |\bar{z} - \bar{y}|^\alpha - |x - \bar{y}|^\alpha, \) for all \(x \in \Omega, \) which implies that \(\bar{y} \in F_u(\bar{z}); \) that is, \(u \) is \(\alpha \)-convex.

To prove the claim, we have from the definition of \(u \) that \(u(\bar{z}) = \lim_{n \to \infty} \lambda_n - |\bar{z} - y_n|^\alpha. \) If \(t \geq 0, \) then we may assume that \(y_n \in \Omega \) otherwise \(v_{\lambda_n, y_n} \leq 0 \) in \(\partial \Omega \) while \(u \geq 0 \) in \(\Omega. \) We may also assume that \(y_n \to \bar{y} \in \Omega \) and hence also \(\lambda_n \to \bar{\lambda} \) and the claim is then proved. If \(t < 0, \) suppose by contradiction that \(|\bar{z} - y_n| \to +\infty, \) in which case also \(\lambda_n \to +\infty. \) This implies that for \(n \) large, \(y_n \notin \Omega. \) Let \(x_n \in \partial \Omega \) be such that \(\text{dist}(y_n, \partial \Omega) = |x_n - y_n|. \) Set \(v_n(x) = \lambda_n - |x - y_n|^\alpha. \)
Then \(v_n \leq 0 \) on \(\partial \Omega \) and hence \(\lambda_n \leq \text{dist}^\alpha(y_n, \partial \Omega) = |x_n - y_n|^\alpha \), which implies that \(v_n(x) \leq |x_n - y_n|^\alpha - |x - y|^\alpha \), so

\[
v_n(\bar{x}) \leq |x_n - y_n|^\alpha - |\bar{x} - y|^\alpha = \alpha|\bar{x}_n - y_n|^\alpha - (\bar{x}_n - y_n, x_n - \bar{x}) \quad \text{for some } \bar{x}_n \in [\bar{x}, x_n],
\]

\[
= \alpha|\bar{x}_n - y_n|^\alpha - |x_n - \bar{x}| \cos \theta_n,
\]

where \(\theta_n = \angle(y_n - \bar{x}_n, x_n - \bar{x}_n) = \angle(y_n - \bar{x}_n, \bar{x} - \bar{x}_n) = \angle(y_n - x_n, \bar{x} - \bar{x}_n) \geq \frac{\pi}{2} + \delta(\epsilon) \) for some \(\delta(\epsilon) > 0 \), where \(B_{\epsilon}(\bar{x}) \subseteq \Omega \) (here \(\angle(x, y) \) denotes the angle between the vectors \(x \) and \(y \)). Hence \(\cos \theta_n \leq -C_{\epsilon} \). Then \(|x_n - y_n|^\alpha - |\bar{x} - y|^\alpha \leq -\alpha|\bar{x}_n - y_n|^\alpha - 1 \epsilon C_{\epsilon} \leq -\alpha|\bar{x}_n - y_n|^\alpha - 1 \epsilon C_{\epsilon} \rightarrow -\infty \) as \(n \rightarrow \infty \). This is a contradiction, since \(v_n(\bar{x}) \rightarrow u(\bar{x}) \).

Next we show that \(u \in \mathcal{C}(\bar{\Omega}) \). First, notice that by definition, \(u \leq U \) in \(\Omega \). If \(t \geq 0 \), then \(u \geq 0 \) and we are done. Suppose \(t < 0 \). Fix \(\bar{x} \in \partial \Omega \), and let \(y \) be the unit outer normal to \(\partial \Omega \) at \(\bar{x} \). For \(s > 0 \), let \(v_s(x) = |\bar{x} - (\bar{x} + \eta s)|^\alpha - |x - (\bar{x} + \eta s)|^\alpha \).

We have \(v_s \leq 0 \) on \(\partial \Omega \), and exactly as above we see that \(v_s(x_0) \rightarrow -\infty \) as \(s \rightarrow +\infty \). Hence, for \(s \) large enough, \(v_s \) is an admissible function and hence \(u \geq v_s \) in \(\Omega \). Since \(v(\bar{x}) = 0 \), we get that \(u \in \mathcal{C}(\bar{\Omega}) \) and \(u = 0 \) on \(\partial \Omega \).

We now show that \(F_u = \beta \delta_{x_0} \) for some \(\beta = \beta(x_0, t) \). Indeed, let \(\bar{x} \in \Omega \), \(\bar{x} \neq x_0 \), and let \(y \in F_u(\bar{x}) \); we claim that \(y \notin F_u(\bar{x}) \) for some \(\bar{x} = \bar{x} \). Assuming the claim, we get from (2.2) that \(|F_u(E)| = 0 \) for each \(E \) with \(x_0 \notin \Omega \), and so \(F_u \) is concentrated at \(x_0 \).

To prove the claim, since \(y \in F_u(\bar{x}) \), \(u(x) \geq u(\bar{x}) + |\bar{x} - y|^\alpha - |x - y|^\alpha \), for all \(x \in \Omega \). Let \(v(x) = u(x) + |\bar{x} - \bar{y}|^\alpha - |x - \bar{y}|^\alpha = \lambda - |x - \bar{y}|^\alpha \). Since \(u \leq 0 \) on \(\partial \Omega \), \(v \leq 0 \) on \(\partial \Omega \) and \(v(x_0) \leq u(x_0) = t \). If \(v(x_0) = t \), then \(y \in F_u(x_0) \); and if \(v(x_0) < t \), then, as before, there exists \(\bar{x} \in \partial \Omega \) such that \(v(\bar{x}) = 0 \) and hence \(y \in F_u(\bar{x}) \).

Before estimating \(\beta \), we need the following characterization of \(u \) (it will be easier to work with \(\bar{u} \) rather than with \(u \)). If \(\bar{u}(x) = \sup \{ \text{dist}^\alpha(y, \partial \Omega) - |x - y|^\alpha \} \), then \(u = \bar{u} \). Notice that \(\bar{u} \leq u \). To show that \(\bar{u} \geq u \), let \(\bar{x} \in \Omega \) and \(\bar{y} \in F_u(\bar{x}) \), so \(u(\bar{x}) \geq u(\bar{x}) + |\bar{x} - \bar{y}|^\alpha - |x - \bar{y}|^\alpha \) for all \(x \in \Omega \), and we claim that there exists \(\bar{x} \in \partial \Omega \) such that \(u(\bar{x}) + |\bar{x} - \bar{y}|^\alpha - |x - \bar{y}|^\alpha = 0 \). Let’s assume this claim holds. We have \(\geq u(\bar{x}) + |\bar{x} - \bar{y}|^\alpha - |x - \bar{y}|^\alpha \) for all \(x \in \partial \Omega \) and \(|\bar{x} - \bar{y}|^\alpha = u(\bar{x}) + |\bar{x} - \bar{y}|^\alpha \), which implies that \(|x - \bar{y}| \geq |\bar{x} - \bar{y}| \) for all \(x \in \partial \Omega \), and hence \(\text{dist}(\bar{y}, \partial \Omega) = |\bar{x} - \bar{y}| \). This implies that \(u(\bar{x}) = \text{dist}^\alpha(\bar{y}, \partial \Omega) - |\bar{x} - \bar{y}|^\alpha \leq \bar{u}(\bar{x}) \) and we are done. We now prove the claim. If the claim is not true, there exists \(\epsilon > 0 \) such that \(u(\bar{x}) + |\bar{x} - \bar{y}|^\alpha - |x - \bar{y}|^\alpha + \epsilon < 0 \) for all \(x \in \partial \Omega \). By continuity, there exists \(\delta > 0 \) such that \(\text{dist}^\alpha(y, \partial \Omega) - |x - y|^\alpha - \epsilon < 0 \) for all \(x \in \partial \Omega \). If \(\text{dist}^\alpha(y, \partial \Omega) - |x - y|^\alpha < t \), then \(y \notin F_u(\bar{x}) \), and let \(v(x) = u(\bar{x}) + |\bar{x} - \bar{y}|^\alpha - |x - \bar{y}|^\alpha + \epsilon \). Then \(M > 1 \) is large enough such that \(0 < \frac{M - (u(\bar{x}) + |\bar{x} - \bar{y}|^\alpha - |x - \bar{y}|^\alpha)}{M} < \frac{1}{2} \). It follows that \(v \leq 0 \) on \(\partial \Omega \) and \(v(x_0) \leq t \), and this implies that \(v \leq u \in \Omega \), but \(v(\bar{x}) > u(\bar{x}) \), and this contradiction proves the claim.

We next prove that

\[
F_u(x_0) = \{ y \in \mathbb{R}^\alpha : \text{dist}^\alpha(y, \partial \Omega) - |x_0 - y|^\alpha \geq t \} := F_t(x_0).
\]
It will be easier to work with $F_u(x_0)$ written in this way. For, if $y \in F_u(x_0)$, then $u(x) \geq u(x_0) + |x_0 - y|^{\alpha} - |x - y|^{\alpha}$ for all $x \in \Omega$, which implies that $|x - y|^{\alpha} \geq u(x_0) + |x_0 - y|^{\alpha}$ for all $x \in \partial \Omega$, and hence, $\text{dist}^{\alpha}(y, \partial \Omega) \geq u(x_0) + |x_0 - y|^{\alpha} = t + |x_0 - y|^{\alpha}$.

On the other hand, if $\text{dist}^{\alpha}(y, \partial \Omega) - |x_0 - y|^{\alpha} \geq t$, then $|x - y|^{\alpha} \geq |x_0 - y|^{\alpha} + t$ for all $x \in \partial \Omega$, and hence $0 \geq |x_0 - y|^{\alpha} + t - |x - y|^{\alpha} = |x_0 - y|^{\alpha} + u(x_0) - |x - y|^{\alpha}$ for all $x \in \partial \Omega$. Set $v(x) = |x_0 - y|^{\alpha} + u(x_0) - |x - y|^{\alpha}$. Then $v \leq 0$ on $\partial \Omega$, $v(x_0) = t$, and hence $u \geq v$ in Ω, which implies $y \in F_u(x_0)$.

The remainder of the proof is devoted to establishing (1.2)-(1.4).

Recall that $u(x_0) = t < U(x_0)$, and say $U(x_0) = \text{dist}^{\alpha}(y_0, \partial \Omega) - |x_0 - y_0|^{\alpha}$ for some $y_0 \in \Omega$. Without loss of generality we will assume from now on that $y_0 = 0$, $\text{dist}(y_0, \partial \Omega) = R$ and $x_0 = |x_0|e_1$ with $|x_0| < R$.

Since $B_R(0) \subseteq \Omega$ we have that $|F_l(x_0)| \geq |\{y \in B_R(0) : \text{dist}^{\alpha}(y, \partial \Omega) - |y - x_0|^{\alpha} \geq t\}| \geq |\{y \in B_R(0) : \text{dist}^{\alpha}(y, \partial B_R(0)) - |y - x_0|^{\alpha} \geq t\}| = |\{y \in B_R(0) : (R - |y|)^{\alpha} - |y - x_0|^{\alpha} \geq t\}|$. We shall estimate the measure of the last set.

Estimation of β when $\alpha = 2$.

First notice that the set $\{y \in B_R(0) : (R - |y|)^2 - |y - x_0|^2 \geq t\}$ is the ellipsoid

$$\left\{ y : \frac{(|y_1| - \delta)^2}{a^2} + \frac{\sum_{i=2}^{n}|y_i|^2}{b^2} \leq 1 \right\}$$

with

$$\delta = \frac{(R^2 - |x_0|^2 - t)|x_0|}{2(R^2 - |x_0|^2)}, \quad a = \frac{(R^2 - |x_0|^2 - t)R}{2(R^2 - |x_0|^2)}, \quad b = \frac{(R^2 - |x_0|^2 - t)}{2(R^2 - |x_0|^2)^{\frac{n-1}{n}}}.$$

The volume of this ellipsoid equals

$$C_n \frac{(R^2 - |x_0|^2 - t)^n R}{(R^2 - |x_0|^2)^{\frac{n-1}{n}}}.$$

We also notice that the set $\{y \in B_R(0) : (R - |y|)^2 - |y - x_0|^2 \geq t\}$ equals the set

$$\left\{ \rho \xi : \xi \in S^{n-1}, 0 \leq \rho \leq \frac{R^2 - |x_0|^2 - t}{2(R - \langle x_0, \xi \rangle)} \right\},$$

and using polar coordinates we get that its volume is equal to $C_n(R^2 - |x_0|^2)^{\frac{n}{2}} \int_{S^{n-1}} \frac{1}{(R - \langle x_0, \xi \rangle)^{\frac{n}{2}}} d\xi$. This implies that

$$\int_{S^{n-1}} \frac{1}{(R - \langle x_0, \xi \rangle)^{\frac{n}{2}}} d\xi = C_n \frac{R^n}{(R^2 - |x_0|^2)^{\frac{n}{2}}}$$

which also implies for $\alpha > 1$ that

$$\int_{S^{n-1}} \frac{1}{(|x_0|^{-\alpha} - \langle |x_0|^{-\alpha} - x_0, \xi \rangle)^{\frac{n}{2}}} d\xi = \frac{R^{\alpha - 1}}{(R^{2(\alpha - 1)} - |x_0|^{2(\alpha - 1)})^{\frac{n}{2}}},$$

for $|x_0| < R$.

Estimation of β for $\alpha > 1$.

Let $\xi \in S^{n-1}$ and consider $\phi(s) = (R - s)^{\alpha} - |s\xi - x_0|^{\alpha}$ for $0 \leq s \leq \frac{R^2 - |x_0|^2}{2(R - \langle x_0, \xi \rangle)}$. We claim that ϕ is decreasing, concave for $1 < \alpha \leq 2$ and convex for $\alpha \geq 2$. First notice that for $0 \leq s \leq \frac{R^2 - |x_0|^2}{2(R - \langle x_0, \xi \rangle)}$ we have $|s\xi - x_0| \leq (R - s)$. Next, we compute $\phi'(s) = \alpha(R - s)^{\alpha - 1} - |s\xi - x_0|^{\alpha - 2}(s\xi - x_0) \leq \alpha(R - s)^{\alpha - 1} + \alpha |s\xi - x_0|^{\alpha - 1} < 0$ and $\phi''(s) = (\alpha - 1)(R - s)^{\alpha - 2} - |s\xi - x_0|^{\alpha - 2} \left(1 - (2 - \alpha) \frac{|s\xi - x_0|}{|s\xi - x_0|} \right)$. Hence if $1 < \alpha < 2$, then $\phi''(s) < 0$; and if $\alpha > 2$, then $\phi''(s) > 0$. Therefore we have, for
Proof. From the calculation when $\alpha \leq 2$, that $\phi(s) \geq R^\alpha - |x_0|^\alpha - s\frac{2(R - (x_0, \xi))(R^\alpha - |x_0|^\alpha)}{R^2 - |x_0|^2}$, and for $\alpha \geq 2$ that $\phi(s) \geq R^\alpha - |x_0|^\alpha - s(\alpha R^{\alpha - 1} - \alpha|x_0|^{\alpha - 2}(x_0, \xi))$. Given $0 \leq t < R^\alpha - |x_0|^\alpha$, we set in case $1 < \alpha \leq 2$, $R^\alpha - |x_0|^\alpha - s\frac{2(R - (x_0, \xi))(R^\alpha - |x_0|^\alpha)}{R^2 - |x_0|^2} = t$ and solve for s to get $s(\xi) = \frac{(R^\alpha - |x_0|^\alpha - t)(R^2 - |x_0|^2)}{2(R^\alpha - |x_0|^\alpha)(R - (x_0, \xi))}$. For $\alpha \geq 2$, we set $R^\alpha - |x_0|^\alpha - s(\alpha R^{\alpha - 1} - \alpha|x_0|^{\alpha - 2}(x_0, \xi)) = t$ and we solve for s to get $s(\xi) = \frac{R^\alpha - |x_0|^\alpha - t}{\alpha R^{\alpha - 1} - \alpha|x_0|^{\alpha - 2}(x_0, \xi)}$. Hence in any case we have that $\{y \in B_R(0) : (R - |y|)^\alpha - |y - x_0|^\alpha \geq t\}$ contains the set $\{\rho \xi : \xi \in S^{n-1}, 0 \leq \rho \leq s(\xi)\}$. Using polar coordinates we find that the volume of the last set is $\frac{1}{n} \int_{S^{n-1}} s(\xi)^n d\xi$. If $1 < \alpha \leq 2$, then
\[
|\{\rho \xi : \xi \in S^{n-1}, 0 \leq \rho \leq s(\xi)\}| = C_n (R^\alpha - |x_0|^\alpha - t)n \int_{S^{n-1}} \frac{1}{(R - (x_0, \xi))^{n+1}} d\xi \leq \frac{(R^\alpha - |x_0|^\alpha - t)^n R^{\alpha - 1}}{(R^{2(\alpha - 1)} - |x_0|^{2(\alpha - 1)})^{\frac{n+1}{n}}} , \text{ from (4.6)}. \]
From the mean value theorem, $R^\alpha - |x_0|^\alpha \leq \alpha R^{\alpha - 1}(R - |x_0|)$, for $1 < \alpha \leq 2$, and for $\alpha \geq 2$ we have $R^{2(\alpha - 1)} - |x_0|^{2(\alpha - 1)} \leq 2(\alpha - 1)R^{2\alpha - 3}(R - |x_0|)$, and using also that $R \leq R + |x_0| \leq 2R$, we get the following estimates: if $1 < \alpha \leq 2$, then $|F_t(x_0)| \geq C \frac{R^{2(\alpha - 2(\alpha - 1))} (R^\alpha - |x_0|^\alpha - t)^n}{(R - |x_0|)^{\frac{4n+1}{2n}}}$. Finally, noticing that $R - |x_0| \leq \text{dist}(x_0, \partial \Omega), R \leq \text{diam}(\Omega)$ and $U(x_0) = R^\alpha - |x_0|^\alpha$, the estimates in the theorem follow.

To complete the proof it remains to show that for $t \geq 0$ and $\alpha > 1$ the set $F_t(x_0)$ is convex. We remark that this fact is not used in the estimation of $|F_t(x_0)|$. To show that $F_t(x_0)$ is convex we need the following lemma.

Lemma 4.2. Let $C = \{(x', z) \in \mathbb{R}^n : z \in \mathbb{R}; z^\alpha - (x^2 + (z - z_0)^2)^{\frac{\alpha}{2}} \geq t\}$, where $r = |x'|, z_0 > 0$. Then, the set C is convex for $t \geq 0$.

Proof. We will show that the function $r(z) = \left((z^\alpha - t)^{\frac{2}{\alpha}} - (z - z_0)^2\right)^{\frac{1}{2}}$ is a concave function on the set $z^\alpha - |z - z_0|^\alpha \geq t$. We have $rr' = (z^\alpha - t)^{\frac{2(\alpha - 1)}{\alpha} z^\alpha - 1} - (z - z_0)$ and
\[
(r')^2 + rr'' = \frac{z^\alpha - (\alpha - 1)t - (z^\alpha - t)^{\frac{2(\alpha - 1)}{\alpha} z^\alpha - 1} - (z - z_0)}{(z^\alpha - t)^{\frac{2(\alpha - 1)}{\alpha} z^\alpha - 1} z^2}.
\]
If $t > 0$, then C is strictly convex.
Hence, to show that \(r'' < 0 \) for \(r > 0 \), we must show that
\[
\frac{z^\alpha - (\alpha - 1)t - (z^\alpha - t)\frac{2(\alpha - 1)}{\alpha} z^{\alpha - 1}}{(z^\alpha - t)\frac{2(\alpha - 1)}{\alpha} z^{\alpha - 2}} \leq (r')^2 = \left(\frac{(z^\alpha - t)\frac{2(\alpha - 1)}{\alpha} z^{\alpha - 1} - (z - z_0)^2}{(z^\alpha - t)\frac{2(\alpha - 1)}{\alpha} z^{\alpha - 2} - (z - z_0)^2}\right),
\]
which holds if and only if
\[
0 \leq (\alpha - 1)t((z^\alpha - t)\frac{2(\alpha - 1)}{\alpha} - (z - z_0)^2) + z^\alpha((z - z_0) - (z^\alpha - t)z^{1-\alpha})^2.
\]
This inequality is obviously true for \(t \geq 0 \). □

For \(\bar{x} \in \partial \Omega \), let \(T_{\bar{x}} \) be a supporting hyperplane to \(\Omega \) at \(\bar{x} \) and let \(P_{\bar{x},t} = \{ y \in \Omega : \text{dist}^\alpha(y, T_{\bar{x}}) - |y - x_0|^\alpha \geq t \} \), which by the previous lemma is a convex set. Notice that \(F_t(x_0) = \{ y \in \Omega : \text{dist}^\alpha(y, \partial \Omega) - |y - x_0|^\alpha \geq t \} = \bigcap_{x \in \partial \Omega} P_{x,t} \), and hence it is a convex set. This completes the proof of Theorem 4.1 □

We now consider the case when \(t < 0 \) in Theorem 4.1

Lemma 4.3. For \(1 < \alpha \leq \frac{2n}{n-1} \) there exists \(\delta > 1 \) depending only on \(\alpha \) such that if \(-t \geq \delta \text{dist}(x_0, \partial \Omega)^\alpha \) then
\[
|F_t(x_0) \cap \Omega^c| \geq C \frac{(-t)^{\frac{n-1}{2(n-1)}}}{\text{dist}(x_0, \partial \Omega)^{\frac{n(2-\alpha)+\alpha}{2(n-1)}}},
\]
where \(C \) depends only on \(\alpha \) and \(n \).

Proof. Write \(x = (x', x_n) \) and assume \(0 \in \partial \Omega, \Omega \subseteq \{ x : x_n \leq 0 \} \) and \(x_0 = (0, -\epsilon) \in \Omega \) with \(\text{dist}(x_0, \partial \Omega) = \epsilon \). Assume that \(-t \geq \delta \epsilon^\alpha \), where \(\delta > 1 \) will be chosen momentarily. For \(y \in \mathbb{R}^n \) with \(y_n \geq 0 \), we have \(\text{dist}^\alpha(y, \partial \Omega) - |y - x_0|^\alpha \geq y_n^\alpha - (|y'|^2 + (y_n + \epsilon)^2)^\frac{\alpha}{2} \). Hence \(H := \{ y : y_n^\alpha - (|y'|^2 + (y_n + \epsilon)^2)^\frac{\alpha}{2} \geq t \} \) and \(y_n \geq 0 \} \subseteq F_t(x_0) \). Let \(\tilde{y} > 0 \) satisfy the equation \(y_n^\alpha - t = (y + \epsilon)^\alpha \). Then by slicing, the volume of \(H \) equals
\[
V = C_n \int_0^{\tilde{y}} ((y_n^\alpha - t)^{\frac{n-1}{2}} - (y + \epsilon)^2)^{\frac{n-1}{2}} dy.
\]
Let \(\phi(y) = (y_n^\alpha - t)^{\frac{n}{2}} - (y + \epsilon)^\alpha \) and \(\phi_1 \) be convex, where \(\phi_1(y) = (y_n^\alpha - t)^{\frac{n}{2}} - (y + \epsilon) \) and \(\phi_2(y) = (y_n^\alpha - t)^{\frac{n}{2}} + (y + \epsilon) \). Since \(\phi_1 \) and \(\phi_2 \) are convex, we have \(\phi_1(y) \geq \phi'_2(\tilde{y})(y - \tilde{y}) \) and \(\phi_2(y) \geq \phi_1(0) + \phi'_1(0)y \). Hence \(\phi_1(y) \phi_2(y) \geq p(y) \), with \(p \) a concave parabola.

Set \(p(y) = \max\{p(y) : y \in [0, \tilde{y}]\} = h \). Then, \(p(y) \geq \frac{h}{y} \), for \(y \in [0, \tilde{y}] \) and
\[
p(y) \geq \frac{h}{y} - (y - \tilde{y}), \text{ for } y \in [\tilde{y}, \tilde{y}] \). Therefore, we get
\[
V \geq \int_0^{\tilde{y}} (p(y))^{\frac{n-1}{2}} dy \geq \frac{h}{^\frac{n-1}{2}} \tilde{y}.
\]
We estimate \(h \) and \(\tilde{y} \) from below. Notice that \(-t = (\tilde{y} + \epsilon)^\alpha - \tilde{y}^\alpha = \alpha \xi^{\alpha - 1} \epsilon \) for some \(y < \xi < y + \epsilon \), and hence \(-t \leq \alpha(y + \epsilon)^{\alpha - 1} \epsilon \), which implies that \(\tilde{y} \geq (\frac{t}{\alpha \epsilon})^{\frac{1}{\alpha-1}} - \epsilon \).

Choosing \(\delta = \alpha^{2\alpha-1} \), we obtain \(\tilde{y} \geq \frac{1}{2} \left(\frac{t}{\alpha \epsilon}\right)^{\frac{1}{\alpha-1}} \). It follows that \(\frac{\tilde{y}}{y + \epsilon} \geq \frac{1}{2} \) and
U is the hyperplane passing through \bar{y} whenever $\alpha > 1$ and Ω be an open, bounded, convex domain in \mathbb{R}^n. Assume $u \in C(\Omega)$, $u = 0$ on $\partial \Omega$, and $0 \leq u(x_0) \leq U(x_0)$ for some $x_0 \in \Omega$. Then we have

\begin{equation}
(U(x_0) - u(x_0))^n \leq C(\text{dist}(x_0, \partial \Omega))^\frac{n+1}{n} \text{diam}(\Omega)^\frac{n(2\alpha-3)-1}{n} |F_u(\Omega)|
\end{equation}

whenever $n(2\alpha-3) - 1 \geq 0$ and

\begin{equation}
(U(x_0) - u(x_0))^n \leq C(\text{dist}(x_0, \partial \Omega))^{n(\alpha-1)} |F_u(\Omega)|
\end{equation}

whenever $n(2\alpha-3) - 1 \leq 0$. The constant C depends only on n and α.

Proof. Suppose $u(x_0) < U(x_0)$. Let $v(x) = \sup \{\lambda - |x - y|^\alpha : v_{\lambda,y}(x_0) \leq u(x_0)\}$ and $v_{\lambda,y} \leq 0$ on $\partial \Omega$. We claim $F_v(x_0) \subseteq F_u(\Omega)$. Let $y \in F_v(x_0)$, so

\begin{equation}
\text{dist}(y, \partial \Omega) = \frac{U(x_0) - u(x_0)}{\alpha |x_0 - y|^{1/\alpha}}\text{diam}(\Omega)^{\frac{1}{\alpha}} |F_v(\Omega)|.
\end{equation}

Since $v_{\lambda,y}(x_0) \leq u(x_0)$, we have $\alpha |x_0 - y|^{1/\alpha} \geq 1$ and

\begin{equation}
\text{dist}(y, \partial \Omega) \leq \text{diam}(\Omega)^{-1} |F_v(\Omega)|,
\end{equation}

which proves the lemma. \hfill \square
\[v(x) \geq v(x_0) + |x_0 - y|^\alpha - |x - y|^\alpha \] for all \(x \in \Omega \). Consider
\[
\sup_{\Omega} (v(x_0) + |x_0 - y|^\alpha - |x - y|^\alpha - u(x)),
\]
and let \(\hat{x} \in \hat{\Omega} \) be the point where the supremum is attained. From Theorem 4.1 \(u(x_0) = v(x_0) \). We have \(v(x_0) + |x_0 - y|^\alpha - |x - y|^\alpha \leq 0 \) for all \(x \in \partial \Omega \). If \(\hat{x} \in \partial \Omega \), then \(u(x) \geq u(x_0) + |x_0 - y|^\alpha - |x - y|^\alpha \) for all \(x \in \hat{\Omega} \) and so \(y \in F_u(x_0) \). If on the other hand \(\hat{x} \in \Omega \), then \(u(x) \geq u(\hat{x}) + |\hat{x} - y|^\alpha - |x - y|^\alpha \) for all \(x \in \hat{\Omega} \), and hence \(y \in F_u(\hat{x}) \). Consequently the claim is proved. From Theorem 4.1 applied to \(v \) we then obtain the result. \(\square \)

Theorem 5.2. Let \(1 < \alpha \leq \frac{2n}{n-1} \). Let \(\Omega \) be an open, bounded, convex domain in \(\mathbb{R}^n \). Assume \(u \in C(\Omega) \) with \(u = 0 \) on \(\partial \Omega \). Let \(x \in \Omega \) such that \(u(x) < 0 \). If
\[
|u(x)| \leq \alpha 2^{\alpha-1} \text{dist}^\alpha(x, \partial \Omega),
\]
then
\[
|u(x)| \leq C_{\alpha,n} \text{dist}^\alpha(x, \partial \Omega) |F_u(\Omega)|.
\]
If on the other hand, \(|u(x)| \) does not hold, then
\[
|u(x)| \leq C_{\alpha,n} \text{dist}^{\alpha\frac{n+1}{2(n-1)}}(x, \partial \Omega) |F_u(\Omega)|.
\]

Proof. If (5.3) holds and since we always have \(B_{\text{dist}(x, \partial \Omega)}(x) \subseteq F_u(\Omega) \), then (5.4) follows. If on the other hand, \(|u(x)| > \alpha 2^{\alpha-1} \text{dist}^\alpha(x, \partial \Omega) \), then we are under the hypothesis of Lemma 4.3 and the proof of (5.5) follows in the same way as in the previous theorem. \(\square \)

Remark 5.3. If \(\alpha > \frac{2n}{n-1} \) and \(u(x) < 0 \), then \(u(x) \) cannot be estimated by any positive power of \(\text{dist}(x, \partial \Omega) \) and consequently neither can \(U(x) - u(x) \).

Considering the cylinder \(\Omega = \{ (x', x_n) : |x'| < 2, |x_n| < 1 \} \), we set \(x = (x', x_n) \). Let \(x_k = (0, 1 - \frac{1}{k}) \). Notice that if \(|x'| \geq 2 \), then \(\text{dist}^\alpha(x, \partial \Omega) - |x - x_k|^\alpha \leq -2^{\alpha} \); this follows since for \(\alpha > 2 \) the function \(h(y) = y^{\alpha} - (a^2 + (y + b)^2)^{\frac{\alpha}{2}} \) is decreasing for \(y > 0 \), for any fixed positive \(a \) and \(b \). Hence, if \(x \notin \Omega \) and \(\text{dist}^\alpha(x, \partial \Omega) - |x - x_k|^\alpha \geq -1 \), then \(|x'| < 2 \), which implies that
\[
F^{-1}(x_k) \cap \Omega^c \subseteq \left\{ x : |x'| < 2, x_n > 1, (x_n - 1)^\alpha - \left(|x'|^2 + \left(x_n - 1 + \frac{1}{k} \right)^2 \right)^{\alpha/2} > -1 \right\},
\]
where \(F^{-1}(x_k) \) is defined in (15), and the set on the right hand side is basically the set \(H \) defined in the proof of Lemma 4.3. We can now estimate from above the measure of this set in the same way as in Lemma 4.3. If \(y > 0 \), \(t < 0 \), then we have
\[
(y^\alpha - t)^{\frac{\alpha}{2}} - y^2 = \frac{\alpha}{2} t^{\frac{\alpha-2}{2}} \text{ for some } \xi \text{ with } y^\alpha < \xi < y^\alpha - t. \] We let \(t = -1 \) and...
\(\epsilon = 1/k \), and with the notation in the proof of Lemma 4.3 we then get that
\[
|F_{-1}(x_k) \cap \Omega^c| \leq \int_0^{\hat{y}_k} ((y^\alpha + 1)^{\frac{1}{\alpha}} - (y + 1/k)^{2}) \, dy
\]
\[
\leq \int_0^{\infty} ((y^\alpha + 1)^{\frac{1}{\alpha}} - y^2) \, dy = \int_0^{1} + \int_0^{\infty}
\]
\[
\leq C_1 + \int_1^{\infty} y^{\left(\frac{2}{(2-\alpha)(n-1)}\right)} \, dy \leq C_{n,\alpha}
\]
for \(\alpha > 2n/(n-1) \). Let \(u_k \) be \(\alpha \)-convex such that \(u_k = 0 \) on \(\partial \Omega \), \(u_k(x_k) = -1 \), whose existence follows from the first part of Theorem 4.1. Then \(|F_{u_k}(\Omega)| \leq C \) for all \(k \) while \(|u_k(x_k)| = 1 \) and \(\text{dist}(x_k, \partial \Omega) = \frac{1}{k} \).

REFERENCES

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122
E-mail address: gutierre@temple.edu

INSTITUTO ARGENTINO DE MATEMÁTICA, CONICET, BUENOS AIRES, ARGENTINA
E-mail address: fedeleti@aim.com