The spectral shift function for compactly supported perturbations of Schrödinger operators on large bounded domains
HTML articles powered by AMS MathViewer
- by Peter D. Hislop and Peter Müller
- Proc. Amer. Math. Soc. 138 (2010), 2141-2150
- DOI: https://doi.org/10.1090/S0002-9939-10-10264-0
- Published electronically: February 9, 2010
- PDF | Request permission
Abstract:
We study the asymptotic behavior as $L \rightarrow \infty$ of the finite-volume spectral shift function for a positive, compactly supported perturbation of a Schrödinger operator in $d$-dimensional Euclidean space, restricted to a cube of side length $L$ with Dirichlet boundary conditions. The size of the support of the perturbation is fixed and independent of $L$. We prove that the Cesàro mean of finite-volume spectral shift functions remains pointwise bounded along certain sequences $L_n \rightarrow \infty$ for Lebesgue-almost every energy. In deriving this result, we give a short proof of the vague convergence of the finite-volume spectral shift functions to the infinite-volume spectral shift function as $L \rightarrow \infty$. Our findings complement earlier results of W. Kirsch [Proc. Amer. Math. Soc. 101, 509–512 (1987); Int. Eqns. Op. Th. 12, 383–391 (1989)], who gave examples of positive, compactly supported perturbations of finite-volume Dirichlet Laplacians for which the pointwise limit of the spectral shift function does not exist for any given positive energy. Our methods also provide a new proof of the Birman–Solomyak formula for the spectral shift function that may be used to express the measure given by the infinite-volume spectral shift function directly in terms of the potential.References
- M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, DOI 10.1002/cpa.3160350206
- Heinz Bauer, Measure and integration theory, De Gruyter Studies in Mathematics, vol. 26, Walter de Gruyter & Co., Berlin, 2001. Translated from the German by Robert B. Burckel. MR 1897176, DOI 10.1515/9783110866209
- M. Sh. Birman, M. Z. Solomyak, Remarks on the spectral shift function, J. Soviet Math., 3, 408–419, 1975.
- M. Sh. Birman and D. R. Yafaev, The spectral shift function. The papers of M. G. Kreĭn and their further development, Algebra i Analiz 4 (1992), no. 5, 1–44 (Russian); English transl., St. Petersburg Math. J. 4 (1993), no. 5, 833–870. MR 1202723
- Chris Brislawn, Kernels of trace class operators, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1181–1190. MR 929421, DOI 10.1090/S0002-9939-1988-0929421-X
- Jean-Michel Combes, Peter D. Hislop, and Frédéric Klopp, An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators, Duke Math. J. 140 (2007), no. 3, 469–498. MR 2362242, DOI 10.1215/S0012-7094-07-14032-8
- Jean-Michel Combes, Peter D. Hislop, and Frédéric Klopp, Some new estimates on the spectral shift function associated with random Schrödinger operators, Probability and mathematical physics, CRM Proc. Lecture Notes, vol. 42, Amer. Math. Soc., Providence, RI, 2007, pp. 85–95. MR 2352262, DOI 10.1090/crmp/042/04
- J. M. Combes, P. D. Hislop, and Shu Nakamura, The $L^p$-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random operators, Comm. Math. Phys. 218 (2001), no. 1, 113–130. MR 1824200, DOI 10.1007/PL00005555
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- R. Geisler, V. Kostrykin, and R. Schrader, Concavity properties of Kreĭn’s spectral shift function, Rev. Math. Phys. 7 (1995), no. 2, 161–181. MR 1317338, DOI 10.1142/S0129055X95000098
- Peter D. Hislop and Peter Müller, A lower bound for the density of states of the lattice Anderson model, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2887–2893. MR 2399055, DOI 10.1090/S0002-9939-08-09361-1
- Dirk Hundertmark, Rowan Killip, Shu Nakamura, Peter Stollmann, and Ivan Veselić, Bounds on the spectral shift function and the density of states, Comm. Math. Phys. 262 (2006), no. 2, 489–503. MR 2200269, DOI 10.1007/s00220-005-1460-0
- Dirk Hundertmark and Barry Simon, An optimal $L^p$-bound on the Krein spectral shift function, J. Anal. Math. 87 (2002), 199–208. Dedicated to the memory of Thomas H. Wolff. MR 1945282, DOI 10.1007/BF02868474
- Thomas Hupfer, Hajo Leschke, Peter Müller, and Simone Warzel, Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials, Rev. Math. Phys. 13 (2001), no. 12, 1547–1581. MR 1869817, DOI 10.1142/S0129055X01001083
- Werner Kirsch, Small perturbations and the eigenvalues of the Laplacian on large bounded domains, Proc. Amer. Math. Soc. 101 (1987), no. 3, 509–512. MR 908658, DOI 10.1090/S0002-9939-1987-0908658-9
- Werner Kirsch, The stability of the density of states of Schrödinger operator under very small perturbations, Integral Equations Operator Theory 12 (1989), no. 3, 383–391. MR 998279, DOI 10.1007/BF01235738
- J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. MR 210177, DOI 10.1007/BF02020976
- Vadim Kostrykin and Robert Schrader, The density of states and the spectral shift density of random Schrödinger operators, Rev. Math. Phys. 12 (2000), no. 6, 807–847. MR 1770547, DOI 10.1142/S0129055X00000320
- Barry Simon, Functional integration and quantum physics, Pure and Applied Mathematics, vol. 86, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 544188
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
- Barry Simon, Spectral averaging and the Krein spectral shift, Proc. Amer. Math. Soc. 126 (1998), no. 5, 1409–1413. MR 1443857, DOI 10.1090/S0002-9939-98-04261-0
- A. V. Sobolev, Efficient bounds for the spectral shift function, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), no. 1, 55–83 (English, with English and French summaries). MR 1208792
- D. R. Yafaev, Mathematical scattering theory, Translations of Mathematical Monographs, vol. 105, American Mathematical Society, Providence, RI, 1992. General theory; Translated from the Russian by J. R. Schulenberger. MR 1180965, DOI 10.1090/mmono/105
Bibliographic Information
- Peter D. Hislop
- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
- MR Author ID: 86470
- ORCID: 0000-0003-3693-0667
- Email: hislop@ms.uky.edu
- Peter Müller
- Affiliation: Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstraße 39, 80333 München, Germany
- Email: mueller@lmu.de
- Received by editor(s): September 3, 2009
- Published electronically: February 9, 2010
- Additional Notes: The first author was supported in part by NSF grant 0503784 while this work was being done.
- Communicated by: Walter Craig
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 2141-2150
- MSC (2010): Primary 81U05, 35P15, 47A40; Secondary 47A75
- DOI: https://doi.org/10.1090/S0002-9939-10-10264-0
- MathSciNet review: 2596053