Quantum spaces without group structure
HTML articles powered by AMS MathViewer
- by Piotr M. Sołtan
- Proc. Amer. Math. Soc. 138 (2010), 2079-2086
- DOI: https://doi.org/10.1090/S0002-9939-10-10265-2
- Published electronically: February 17, 2010
- PDF | Request permission
Abstract:
We prove that some well known compact quantum spaces such as quantum tori and some quantum two-spheres do not admit a compact quantum group structure. This is achieved by considering existence of traces, characters and nuclearity of the corresponding $\mathrm {C}^*$-algebras.References
- E. Bédos, G. J. Murphy, and L. Tuset, Co-amenability of compact quantum groups, J. Geom. Phys. 40 (2001), no. 2, 130–153. MR 1862084, DOI 10.1016/S0393-0440(01)00024-9
- E. Bédos, G. J. Murphy, and L. Tuset, Amenability and co-amenability of algebraic quantum groups. II, J. Funct. Anal. 201 (2003), no. 2, 303–340. MR 1986692, DOI 10.1016/S0022-1236(03)00021-1
- Ola Bratteli, George A. Elliott, David E. Evans, and Akitaka Kishimoto, Noncommutative spheres. I, Internat. J. Math. 2 (1991), no. 2, 139–166. MR 1094701, DOI 10.1142/S0129167X91000090
- O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto, Noncommutative spheres. II. Rational rotations, J. Operator Theory 27 (1992), no. 1, 53–85. MR 1241115
- Ola Bratteli and Akitaka Kishimoto, Noncommutative spheres. III. Irrational rotations, Comm. Math. Phys. 147 (1992), no. 3, 605–624. MR 1175495
- Alain Connes, $C^{\ast }$ algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599–A604 (French, with English summary). MR 572645
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Ludwik Dąbrowski, The garden of quantum spheres, Noncommutative geometry and quantum groups (Warsaw, 2001) Banach Center Publ., vol. 61, Polish Acad. Sci. Inst. Math., Warsaw, 2003, pp. 37–48. MR 2024420, DOI 10.4064/bc61-0-3
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Piotr M. Hajac and Tetsuya Masuda, Quantum double-torus, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 6, 553–558 (English, with English and French summaries). MR 1650603, DOI 10.1016/S0764-4442(98)89162-3
- PawełKruszyński and Stanisław L. Woronowicz, A noncommutative Gel′fand-Naĭmark theorem, J. Operator Theory 8 (1982), no. 2, 361–389. MR 677419
- Ann Maes and Alfons Van Daele, Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), no. 1-2, 73–112. MR 1645264
- Toshikazu Natsume and Catherine L. Olsen, A new family of noncommutative 2-spheres, J. Funct. Anal. 202 (2003), no. 2, 363–391. MR 1990530, DOI 10.1016/S0022-1236(03)00023-5
- Carl Pearcy and David Topping, On commutators in ideals of compact operators, Michigan Math. J. 18 (1971), 247–252. MR 284853
- P. Podleś, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193–202. MR 919322, DOI 10.1007/BF00416848
- Marc A. Rieffel, Noncommutative tori—a case study of noncommutative differentiable manifolds, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 191–211. MR 1047281, DOI 10.1090/conm/105/1047281
- Marc A. Rieffel, $C^{\ast }$-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415–429. MR 623572
- Zhong-Jin Ruan, Amenability of Hopf von Neumann algebras and Kac algebras, J. Funct. Anal. 139 (1996), no. 2, 466–499. MR 1402773, DOI 10.1006/jfan.1996.0093
- Piotr M. Sołtan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), no. 4, 1245–1270. MR 2210362
- Piotr M. Sołtan, Quantum families of maps and quantum semigroups on finite quantum spaces, J. Geom. Phys. 59 (2009), no. 3, 354–368. MR 2501746, DOI 10.1016/j.geomphys.2008.11.007
- Piotr M. Sołtan, Examples of quantum commutants, Arab. J. Sci. Eng. Sect. C Theme Issues 33 (2008), no. 2, 447–457 (English, with English and Arabic summaries). MR 2500052
- P.M. Sołtan, Quantum $\mathrm {SO}(3)$ groups and quantum group actions on $M_2$. J. Noncommut. Geom. 4 (2010), 2–28.
- Reiji Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), no. 4, 949–964. MR 2276175
- A. Van Daele, The Haar measure on a compact quantum group, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3125–3128. MR 1277138, DOI 10.1090/S0002-9939-1995-1277138-0
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665. MR 901157
- S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) North-Holland, Amsterdam, 1998, pp. 845–884. MR 1616348
Bibliographic Information
- Piotr M. Sołtan
- Affiliation: Institute of Mathematics, Polish Academy of Sciences – and – Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Email: piotr.soltan@fuw.edu.pl
- Received by editor(s): May 11, 2009
- Received by editor(s) in revised form: September 21, 2009
- Published electronically: February 17, 2010
- Additional Notes: This research was partially supported by a Polish government grant, no. N201 1770 33.
- Communicated by: Marius Junge
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2079-2086
- MSC (2000): Primary 46L89, 46L85, 17B37, 81R60, 20G42
- DOI: https://doi.org/10.1090/S0002-9939-10-10265-2
- MathSciNet review: 2596045