Toeplitz-composition $C^{*}$-algebras for certain finite Blaschke products
HTML articles powered by AMS MathViewer
- by Hiroyasu Hamada and Yasuo Watatani
- Proc. Amer. Math. Soc. 138 (2010), 2113-2123
- DOI: https://doi.org/10.1090/S0002-9939-10-10270-6
- Published electronically: February 9, 2010
- PDF | Request permission
Abstract:
Let $R$ be a finite Blaschke product of degree at least two with $R(0)=0$. Then there exists a relation between the associated composition operator $C_R$ on the Hardy space and the $C^*$-algebra $\mathcal {O}_R (J_R)$ associated with the complex dynamical system $(R^{\circ n})_n$ on the Julia set $J_R$. We study the $C^*$-algebra $\mathcal {TC}_R$ generated by both the composition operator $C_R$ and the Toeplitz operator $T_z$ to show that the quotient algebra by the ideal of the compact operators is isomorphic to the $C^*$-algebra $\mathcal {O}_R (J_R)$, which is simple and purely infinite.References
- Paul S. Bourdon and Joel H. Shapiro, Adjoints of rationally induced composition operators, J. Funct. Anal. 255 (2008), no. 8, 1995–2012. MR 2462584, DOI 10.1016/j.jfa.2008.07.002
- Carl C. Cowen, Linear fractional composition operators on $H^2$, Integral Equations Operator Theory 11 (1988), no. 2, 151–160. MR 928479, DOI 10.1007/BF01272115
- Carl C. Cowen and Eva A. Gallardo-Gutiérrez, A new class of operators and a description of adjoints of composition operators, J. Funct. Anal. 238 (2006), no. 2, 447–462. MR 2253727, DOI 10.1016/j.jfa.2006.04.031
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- Ulrich Daepp, Pamela Gorkin, and Raymond Mortini, Ellipses and finite Blaschke products, Amer. Math. Monthly 109 (2002), no. 9, 785–795. MR 1933701, DOI 10.2307/3072367
- Valentin Deaconu and Paul S. Muhly, $C^*$-algebras associated with branched coverings, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1077–1086. MR 1814145, DOI 10.1090/S0002-9939-00-05697-5
- Ruy Exel, A new look at the crossed-product of a $C^*$-algebra by an endomorphism, Ergodic Theory Dynam. Systems 23 (2003), no. 6, 1733–1750. MR 2032486, DOI 10.1017/S0143385702001797
- Christopher Hammond, Jennifer Moorhouse, and Marian E. Robbins, Adjoints of composition operators with rational symbol, J. Math. Anal. Appl. 341 (2008), no. 1, 626–639. MR 2394110, DOI 10.1016/j.jmaa.2007.10.039
- Michael T. Jury, The Fredholm index for elements of Toeplitz-composition $C^*$-algebras, Integral Equations Operator Theory 58 (2007), no. 3, 341–362. MR 2320853, DOI 10.1007/s00020-007-1494-0
- Michael T. Jury, $C^\ast$-algebras generated by groups of composition operators, Indiana Univ. Math. J. 56 (2007), no. 6, 3171–3192. MR 2375714, DOI 10.1512/iumj.2007.56.3164
- Tsuyoshi Kajiwara and Yasuo Watatani, $C^\ast$-algebras associated with complex dynamical systems, Indiana Univ. Math. J. 54 (2005), no. 3, 755–778. MR 2151233, DOI 10.1512/iumj.2005.54.2530
- T. L. Kriete, B. D. MacCluer and J. L. Moorhouse, Composition operators within singly generated composition $C^*$-algebras, arXiv:math.FA/0610077.
- Thomas L. Kriete, Barbara D. MacCluer, and Jennifer L. Moorhouse, Toeplitz-composition $C^*$-algebras, J. Operator Theory 58 (2007), no. 1, 135–156. MR 2336048
- J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1925), 481-519.
- Rubén A. Martínez-Avendaño and Peter Rosenthal, An introduction to operators on the Hardy-Hilbert space, Graduate Texts in Mathematics, vol. 237, Springer, New York, 2007. MR 2270722
- N. F. G. Martin, On finite Blaschke products whose restrictions to the unit circle are exact endomorphisms, Bull. London Math. Soc. 15 (1983), no. 4, 343–348. MR 703758, DOI 10.1112/blms/15.4.343
- María J. Martín and Dragan Vukotić, Adjoints of composition operators on Hilbert spaces of analytic functions, J. Funct. Anal. 238 (2006), no. 1, 298–312. MR 2253017, DOI 10.1016/j.jfa.2006.04.024
- John N. McDonald, Adjoints of a class of composition operators, Proc. Amer. Math. Soc. 131 (2003), no. 2, 601–606. MR 1933352, DOI 10.1090/S0002-9939-02-06590-5
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- Paul S. Muhly and Baruch Solel, On the Morita equivalence of tensor algebras, Proc. London Math. Soc. (3) 81 (2000), no. 1, 113–168. MR 1757049, DOI 10.1112/S0024611500012405
- Paul S. Muhly and Mark Tomforde, Topological quivers, Internat. J. Math. 16 (2005), no. 7, 693–755. MR 2158956, DOI 10.1142/S0129167X05003077
- Brett Ninness and Fredrik Gustafsson, A unifying construction of orthonormal bases for system identification, IEEE Trans. Automat. Control 42 (1997), no. 4, 515–521. MR 1442586, DOI 10.1109/9.566661
- Brett Ninness, Håkan Hjalmarsson, and Fredrik Gustafsson, Generalized Fourier and Toeplitz results for rational orthonormal bases, SIAM J. Control Optim. 37 (1999), no. 2, 429–460. MR 1655861, DOI 10.1137/S0363012996305437
- Eric A. Nordgren, Composition operators, Canadian J. Math. 20 (1968), 442–449. MR 223914, DOI 10.4153/CJM-1968-040-4
- Efton Park, Toeplitz algebras and extensions of irrational rotation algebras, Canad. Math. Bull. 48 (2005), no. 4, 607–613. MR 2176158, DOI 10.4153/CMB-2005-056-2
- Michael V. Pimsner, A class of $C^*$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\textbf {Z}$, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189–212. MR 1426840
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266
- John V. Ryff, Subordinate $H^{p}$ functions, Duke Math. J. 33 (1966), 347–354. MR 192062
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199. MR 240824, DOI 10.2307/2373276
Bibliographic Information
- Hiroyasu Hamada
- Affiliation: Graduate School of Mathematics, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- Email: h-hamada@math.kyushu-u.ac.jp
- Yasuo Watatani
- Affiliation: Department of Mathematical Sciences, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- Email: watatani@math.kyushu-u.ac.jp
- Received by editor(s): October 23, 2008
- Received by editor(s) in revised form: October 8, 2009
- Published electronically: February 9, 2010
- Communicated by: Marius Junge
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2113-2123
- MSC (2010): Primary 46L55, 47B33; Secondary 37F10, 46L08
- DOI: https://doi.org/10.1090/S0002-9939-10-10270-6
- MathSciNet review: 2596050