Benedicks’ theorem for the Heisenberg group
HTML articles powered by AMS MathViewer
- by E. K. Narayanan and P. K. Ratnakumar
- Proc. Amer. Math. Soc. 138 (2010), 2135-2140
- DOI: https://doi.org/10.1090/S0002-9939-10-10272-X
- Published electronically: February 4, 2010
- PDF | Request permission
Abstract:
If an integrable function $f$ on the Heisenberg group is supported on the set $B \times \mathbb {R}$ where $B \subset \mathbb {C}^n$ is compact and the group Fourier transform $\hat {f}(\lambda )$ is a finite rank operator for all $\lambda \in \mathbb {R} \setminus \{0\},$ then $f \equiv 0.$References
- Didier Arnal and Jean Ludwig, Q.U.P. and Paley-Wiener properties of unimodular, especially nilpotent, Lie groups, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1071–1080. MR 1353372, DOI 10.1090/S0002-9939-97-03608-3
- Michael Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), no. 1, 180–183. MR 780328, DOI 10.1016/0022-247X(85)90140-4
- Philippe Jaming, Principe d’incertitude qualitatif et reconstruction de phase pour la transformée de Wigner, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 3, 249–254 (French, with English and French summaries). MR 1650249, DOI 10.1016/S0764-4442(98)80141-9
- A. J. E. M. Janssen, Proof of a conjecture on the supports of Wigner distributions, J. Fourier Anal. Appl. 4 (1998), no. 6, 723–726. MR 1666005, DOI 10.1007/BF02479675
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- Gerald B. Folland and Alladi Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238. MR 1448337, DOI 10.1007/BF02649110
- John F. Price and Alladi Sitaram, Functions and their Fourier transforms with supports of finite measure for certain locally compact groups, J. Funct. Anal. 79 (1988), no. 1, 166–182. MR 950089, DOI 10.1016/0022-1236(88)90035-3
- A. Sitaram, M. Sundari, and S. Thangavelu, Uncertainty principles on certain Lie groups, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), no. 2, 135–151. MR 1350473, DOI 10.1007/BF02880360
- Sundaram Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, vol. 42, Princeton University Press, Princeton, NJ, 1993. With a preface by Robert S. Strichartz. MR 1215939
- Sundaram Thangavelu, An introduction to the uncertainty principle, Progress in Mathematics, vol. 217, Birkhäuser Boston, Inc., Boston, MA, 2004. Hardy’s theorem on Lie groups; With a foreword by Gerald B. Folland. MR 2008480, DOI 10.1007/978-0-8176-8164-7
Bibliographic Information
- E. K. Narayanan
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore 12, India
- Email: naru@math.iisc.ernet.in
- P. K. Ratnakumar
- Affiliation: Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India
- Email: ratnapk@hri.res.in
- Received by editor(s): April 15, 2009
- Received by editor(s) in revised form: October 28, 2009
- Published electronically: February 4, 2010
- Additional Notes: The first author was supported in part by a grant from UGC via DSA-SAP
- Communicated by: Michael T. Lacey
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2135-2140
- MSC (2010): Primary 42B10; Secondary 22E30, 43A05
- DOI: https://doi.org/10.1090/S0002-9939-10-10272-X
- MathSciNet review: 2596052