Notes on the regularity of harmonic map systems
HTML articles powered by AMS MathViewer
- by Tao Huang and Changyou Wang
- Proc. Amer. Math. Soc. 138 (2010), 2015-2023
- DOI: https://doi.org/10.1090/S0002-9939-10-10344-X
- Published electronically: February 5, 2010
- PDF | Request permission
Abstract:
In this paper, we provide an alternative proof of $C^{1,\alpha }$-regularity of continuous weak solutions to the system of harmonic maps or heat flow of harmonic maps by Riesz potential estimates between Morrey spaces.References
- David R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), no. 4, 765–778. MR 458158
- Fabrice Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), no. 4, 417–443. MR 1208652, DOI 10.1007/BF02599324
- Yun Mei Chen, Jiayu Li, and Fang-Hua Lin, Partial regularity for weak heat flows into spheres, Comm. Pure Appl. Math. 48 (1995), no. 4, 429–448. MR 1324408, DOI 10.1002/cpa.3160480403
- Lawrence C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), no. 2, 101–113. MR 1143435, DOI 10.1007/BF00375587
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Mikhail Feldman, Partial regularity for harmonic maps of evolution into spheres, Comm. Partial Differential Equations 19 (1994), no. 5-6, 761–790. MR 1274539, DOI 10.1080/03605309408821034
- Frédéric Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 8, 591–596 (French, with English summary). MR 1101039
- Mariano Giaquinta and Enrico Giusti, The singular set of the minima of certain quadratic functionals, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 45–55. MR 752579
- Mariano Giaquinta and Stefan Hildebrandt, A priori estimates for harmonic mappings, J. Reine Angew. Math. 336 (1982), 124–164. MR 671325, DOI 10.1515/crll.1982.336.124
- Stéfan Hildebrandt, Helmut Kaul, and Kjell-Ove Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), no. 1-2, 1–16. MR 433502, DOI 10.1007/BF02392311
- Jürgen Jost, Harmonic mappings between Riemannian manifolds, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 4, Australian National University, Centre for Mathematical Analysis, Canberra, 1984. MR 756629
- Richard M. Schoen, Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 321–358. MR 765241, DOI 10.1007/978-1-4612-1110-5_{1}7
- Richard Schoen and Karen Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geometry 17 (1982), no. 2, 307–335. MR 664498
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- Tao Huang
- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
- MR Author ID: 777097
- Email: thuang@ms.uky.edu
- Changyou Wang
- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
- Email: cywang@ms.uky.edu
- Received by editor(s): June 12, 2009
- Published electronically: February 5, 2010
- Additional Notes: This work was partially supported by NSF grant 0601162
- Communicated by: Chuu-Lian Terng
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 2015-2023
- MSC (2010): Primary 35J50, 35K40; Secondary 58E20
- DOI: https://doi.org/10.1090/S0002-9939-10-10344-X
- MathSciNet review: 2596037