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INTEGRAL CONDITIONS ON THE UNIFORM ASYMPTOTIC

STABILITY FOR TWO-DIMENSIONAL LINEAR SYSTEMS

WITH TIME-VARYING COEFFICIENTS

JITSURO SUGIE AND MASAKAZU ONITSUKA

(Communicated by Yingfei Yi)

Abstract. This paper is concerned with the uniform asymptotic stability of
the zero solution of the linear system x′ = A(t)x with A(t) being a 2×2 matrix.
Our result can be used without knowledge about a fundamental matrix of the
system.

1. Introduction

We consider the linear system

(1) x′ = A(t)x =

(
− e(t) f(t)

− g(t) −h(t)

)
x,

where the prime denotes d/dt; the coefficients e(t), f(t), g(t) and h(t) are continuous
for t ≥ 0, and they are allowed to change sign. It is clear that system (1) has the
zero solution (x(t), y(t)) ≡ (0, 0).

In the case where e(t) ≡ h(t) and f(t) ≡ g(t), a fundamental matrix X(t) for
system (1) is given by

(2) X(t) =

(
cosG(t) sinG(t)

− sinG(t) cosG(t)

)
exp(−H(t)),

where

G(t) =

∫ t

0

g(τ )dτ and H(t) =

∫ t

0

h(τ )dτ.

Let ‖x‖ be the Euclidean norm of a vector x. Then, we have

‖X(t)X−1(s)‖ def
= sup

‖x‖=1

‖X(t)X−1(s)x‖ = exp(−H(t) +H(s))

for 0 ≤ s ≤ t < ∞. Following Theorem 1 in the book [2, p. 54], in general, the zero
solution of (1) is uniformly asymptotically stable (for the definition, see Section 2)
if and only if there exist positive constants R and ρ such that

(3) ‖X(t)X−1(s)‖ ≤ R exp(−ρ(t− s)) for 0 ≤ s ≤ t < ∞.
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We therefore conclude that a necessary and sufficient condition for the zero solution
of (1) to be uniformly asymptotically stable is that

(4)

∫ t

s

h(τ )dτ ≥ ρ(t− s)− σ for 0 ≤ s ≤ t < ∞

with ρ > 0 and σ > 0 in the special case where e(t) ≡ h(t) and f(t) ≡ g(t).
For example, consider system (1) with

(5) e(t) = h(t) = 0.1 + sin t and f(t) = g(t) =
1

2− sin t
.

Then ∫ t

s

h(τ )dτ = 0.1(t− s)− cos t+ cos s ≥ 0.1(t− s)− 2.

Hence, condition (4) is satisfied with ρ = 0.1 and σ = 2, and therefore the zero
solution of (1) with (5) is uniformly asymptotically stable.

As another method, Floquet theory is available for this example, because all
coefficients are periodic functions with period 2π. Note that X(2π) is the mon-
odromy matrix of (1), where X(t) is given in (2). Let λ1 and λ2 be the eigenvalues
of the monodromy matrix X(2π) (λ1 and λ2 are often called the Floquet multipliers
of (1)). It follows from Floquet theory that the zero solution of (1) is uniformly
asymptotically stable if and only if the Floquet multipliers λ1 and λ2 have magni-
tudes strictly less than 1. For example, Floquet theory can be found in the books
[1, 3, 4, 6, 9].

Since

G(t) =

∫ t

0

1

2− sin τ
dτ =

2√
3
Tan−1

(
2 tan(t/2)− 1√

3

)
+

2mπ√
3

+
π

3
√
3

for mπ < t ≤ (m+ 1)π, m = 0, 1, 2, . . . , and

H(t) =

∫ t

0

(0.1 + sin τ )dτ = 0.1t+ 1− cos t

for t > 0, it follows that G(2π) = 2π/
√
3 and H(2π) = 0.2π. Hence, from (2) it

turns out that the monodromy matrix

X(2π) =

(
cos

(
2π/

√
3
)

sin
(
2π/

√
3
)

− sin
(
2π/

√
3
)

cos
(
2π/

√
3
)
)
e−0.2π,

and therefore the Floquet multipliers λ1 and λ2 are the roots of the equation

λ2 − 2e−0.2πcos
2π√
3
λ+ e−0.4π = 0;

that is,

λ1 = e−0.2π

(
cos

2π√
3

+ i sin
2π√
3

)
and λ2 = e−0.2π

(
cos

2π√
3

− i sin
2π√
3

)
.

Since the Floquet multipliers have modulus smaller than 1, the zero solution of (1)
with (5) is uniformly asymptotically stable.

To confirm whether Coppel’s criterion (3) is satisfied or not, of course, we need
a fundamental matrix for system (1). Unfortunately, however, we cannot get a
concrete expression of a fundamental matrix in the general case where e(t) �≡ h(t)
or f(t) �≡ g(t). On the other hand, if the coefficients e(t), f(t), g(t) and h(t) are
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periodic, then, without knowledge of a fundamental matrix of (1), the Floquet
multipliers λ1 and λ2 can be calculated by a numerical scheme. For example,
consider system (1) with

(6) e(t) = 0, f(t) = g(t) =
1

2− sin t
and h(t) = 0.1 + sin t.

Then, although we cannot find a fundamental matrix of (1), the Floquet multipliers
λ1 and λ2 can be estimated as follows:

λ1 ≈ 0.1875612224300 and λ2 ≈ 2.8443410859625 > 1.

Hence, the zero solution of (1) with (6) is not uniformly asymptotically stable.
The fault of Floquet theory is being unable to use it when some of the coefficients

of (1) are not periodic. In this paper, we give sufficient conditions for the zero
solution of (1) to be uniformly asymptotically stable, which are applicable even in
cases where a fundamental matrix cannot be found and system (1) has non-periodic
coefficients. In Section 2, we present the main result and give its proof. To illustrate
our main result, we take some concrete examples.

2. The main result

We denote the solution of (1) through (t0,x0) ∈ [0,∞)×R
2 by x(t; t0,x0). The

zero solution of (1) is said to be uniformly stable if, for any ε > 0, there exists a
δ(ε) > 0 such that t0 ≥ 0 and ‖x0‖ < δ imply ‖x(t; t0,x0)‖ < ε for all t ≥ t0.
The zero solution is said to be uniformly attractive if there exists a δ0 > 0 such
that, for every η > 0, there is a T (η) > 0 such that t0 ≥ 0 and ‖x0‖ < δ0 imply
‖x(t; t0,x0)‖ < η for t ≥ t0 + T . The zero solution is uniformly asymptotically
stable if it is uniformly stable and is uniformly attractive. The most important
point is that δ and T can be chosen independent of t0 in the definition of uniform
asymptotic stability.

The concept of uniform asymptotic stability plays an essential role in perturba-
tion problems. For example, if the zero solution of (1) is uniformly asymptotically
stable and if f(t,x) and λ(t) satisfy that ‖f(t,x)‖ ≤ λ(t)‖x‖ for t ≥ 0 and x ∈ R

2,
where ∫ ∞

0

λ(s)ds < ∞,

then the zero solution of the perturbed system

x′ = A(t)x+ f(t,x)

is uniformly asymptotically stable. However, if δ and T depend on t0, then we
cannot derive this conclusion. For the details, see [7] (also [1, pp. 169–170]). For
this reason, the present study has a close relationship with perturbation problems.

Let

φ+(t) = max{0, φ(t)} and φ−(t) = max{0,−φ(t)}
for a continuous function φ(t). Then, it follows that φ(t) = φ+(t) − φ−(t) and
|φ(t)| = φ+(t) + φ−(t). The function φ+(t) is said to be integrally positive if∫

I

φ+(t)dt = ∞
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for every set I =
∞⋃

n=1

[τn, σn] such that τn + ω < σn < τn+1 for some ω > 0. For

example, sin2 t is an integrally positive function (see [5, 8]).
Throughout this paper, we assume that f(t)g(t) > 0 and g(t)/f(t) is differen-

tiable for t ≥ 0. Then, we may define

ψ(t) = 2h(t) +
f(t)

g(t)

(
g(t)

f(t)

)′
.

Our main result is as follows:

Theorem 1. Suppose that f(t), g(t) and h+(t) are bounded for t ≥ 0. Suppose
also that

(i) f(t)g(t) > 0 for t ≥ 0 and lim inf
t→∞

f(t)g(t) > 0;

(ii)

∫ ∞

0

e−(t)dt < ∞,

∫ ∞

0

h−(t)dt < ∞ and

∫ ∞

0

ψ−(t)dt < ∞;

(iii) ψ+(t) is integrally positive.

Then the zero solution of (1) is uniformly asymptotically stable.

Remark 1. As a paper related to Theorem 1, we can cite Hatvani [5]. Under the
assumptions that e(t) ≥ 0, f(t) = g(t) ≥ 0 and h(t) ≥ 0 for t ≥ 0, he has given
some sufficient conditions guaranteeing only asymptotic stability for system (1).

Before proving the main theorem, we present some values drawn from assump-
tions in Theorem 1. From assumption (i) and the boundedness of f(t), g(t) and
h+(t), we can choose positive numbers f , g, h, k and K such that

|f(t)| ≤ f, g ≤ |g(t)|, h+(t) ≤ h and k ≤ f(t)

g(t)
≤ K

for t ≥ 0. We may assume that k ≤ 1 ≤ K. From assumption (ii), there exist
positive constants L and M such that

L =

∫ ∞

0

(2e−(s) + ψ−(s))ds and M =

∫ ∞

0

h−(s)ds.

It is known that ψ+(t) is integrally positive if and only if

lim inf
t→∞

∫ t+γ

t

ψ+(s)ds > 0

for every γ > 0. Hence, there exist an l > 0 and a t̂ > 0 such that∫ t+1

t

ψ+(s)ds ≥ l for t ≥ t̂.

The above-mentioned values are used without notice in the proof of Theorem 1.

Proof of Theorem 1. We will prove the theorem by dividing it into seven steps.

Step 1. To prove the uniform stability of the zero solution of (1), for a given ε > 0,
we select

(7) δ(ε) =

√
k

KeL
ε.
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Needless to say, δ < ε. Let t0 ≥ 0 and x0 = (x0, y0) be given. We will show that

t ≥ t0 and ‖x0‖ =
√
x2
0 + y20 < δ imply ‖x(t; t0,x0)‖ < ε. For convenience of

notation, we write x(t) = x(t; t0,x0) and (x(t), y(t)) = x(t).
Let

u(t) =
f(t)

g(t)
y2(t) and v(t) = x2(t) + u(t).

Then, v(t) ≥ x2(t) + ky2(t) ≥ k‖x(t)‖2 for t ≥ t0. Since

v′(t) = − 2e(t)x2(t)− ψ(t)u(t) ≤ (2e−(t) + ψ−(t))v(t)

for t ≥ t0, we have

v(t) ≤ exp

(∫ t

t0

(2e−(s) + ψ−(s))ds

)
v(t0) ≤ eLv(t0)(8)

≤ eLK(x2
0 + y20) < KeLδ2(ε) = kε2

for t ≥ t0. Hence, we obtain

‖x(t; t0,x0)‖ < ε for t ≥ t0,

and therefore, the zero solution of (1) is uniformly stable. This completes the proof
of Step 1.

Hereafter, we will show that the zero solution of (1) is uniformly attractive.

Step 2. Let δ0 = 1/
√
KeL. For every η > 0, a number T (η) is decided as follows.

To begin with, let

v = kδ2(η), μ = min

{
v

2
,
kg2v

8h
2

}
and τ = t̂+

[
2(1 + L)

lμ

]
+ 2,

where δ(·) is the number given in (7) and [c] means the greatest integer that is less
than or equal to a real number c. Note that v, μ and τ depend only on η. Consider
the definite integral ∫ t+μ

√
k/(8f)

t

ψ+(s)ds.

Then, the upper limit of integration depends only on η, and so does the integral.
Let

ν = lim inf
t→∞

1

4

∫ t+μ
√
k/(8f)

t

ψ+(s)ds.

Since ψ+(t) is integrally positive, the number ν is positive and depends only on η.
From assumptions (ii) and (iii) it turns out that there exists a positive number σ
depending only on η such that

(9)

∫ ∞

t

(2e−(s) + ψ−(s))ds ≤ min
{μ

4
,
μν

4

}
and

(10)

∫ t+μ
√
k/(8f)

t

ψ+(s)ds ≥ 2ν

for t ≥ σ, respectively. Using numbers μ, ν, σ and τ , we define

T = σ +

([
4

μν

]
+ 1

)(
3eM

h
+ τ

)
.
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Step 3. Let t0 ≥ 0 and let x0 = (x0, y0) be a point satisfying ‖x0‖ =
√
x2
0 + y20 < δ0.

Consider a solution x(t) = x(t; t0,x0) of (1) through (t0,x0). To prove the uniform
attractivity of the zero solution of (1), it is enough to show that there exists a
t∗ ∈ [t0, t0 + T ] such that

(11) ‖x(t∗)‖ < δ(η).

In fact, because of Step 1, if (11) holds, then any solution x(t; t∗,x(t∗)) of (1)
through (t∗,x(t∗)) satisfies that

‖x(t; t∗,x(t∗))‖ < η for t ≥ t∗.

Since t0 + T ≥ t∗, it follows that

‖x(t; t0,x0)‖ < η for t ≥ t0 + T.

There are two cases to consider: (a) η ≥ 1/
√
k and (b) 0 < η ≤ 1/

√
k. In

case (a), by (7), we have

δ0 =
1√
KeL

≤
√

k

KeL
η = δ(η).

Hence, letting t∗ = t0, we obtain

‖x(t∗)‖ = ‖x0‖ < δ0 ≤ δ(η),

namely, (11). This completes the proof. Thus, we have only to consider case (b)
from now on. By way of contradiction, we will prove that inequality (11) holds.
Suppose that

‖x(t)‖ ≥ δ(η) for t0 ≤ t ≤ t0 + T.

Then, we have

(12) 0 < v = kδ2(η) ≤ k‖x(t)‖2 ≤ v(t)

for t0 ≤ t ≤ t0 + T . Using (8) again, we get

(13) v(t) ≤ eLK(x2
0 + y20) < KeLδ20 = 1 for t ≥ t0.

Step 4. If u(t) ≥ μ/2 for any interval [α1, β1] ⊂ [t0, t0+T ], then β1−α1 < τ , where
μ and τ are numbers given in Step 2. In fact, taking into account that

v′(t) = − 2e(t)x2(t)− ψ(t)u(t)

= − 2e(t)x2(t) + ψ−(t)u(t)− ψ+(t)u(t)

for t ≥ t0, from (13) we see that

0 ≤ ψ+(t)u(t) = − v′(t)− 2e(t)x2(t) + ψ−(t)u(t)(14)

≤ − v′(t) + (2e−(t) + ψ−(t))v(t) ≤ − v′(t) + 2e−(t) + ψ−(t)

for t ≥ t0. Integrating this inequality from α1 to β1 and using (12) and (13), we
obtain

μ

2

∫ β1

α1

ψ+(s)ds ≤
∫ β1

α1

ψ+(s)u(s)ds ≤ −
∫ β1

α1

v′(s)ds+

∫ β1

α1

(2e−(s) + ψ−(s))ds(15)

≤ v(α1)− v(β1) + L < 1 + L.

Let

m =

[
2(1 + L)

lμ

]
+ 1.
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Taking m ≥ 2(1 + L)/(lμ) into account, we see that

∫ t+m

t

ψ+(s)ds =

∫ t+1

t

ψ+(s)ds+

∫ t+2

t+1

ψ+(s)ds+ · · ·+
∫ t+m

t+m−1

ψ+(s)ds

≥ lm ≥ 2(1 + L)

μ

for t ≥ t̂. If α1 ≥ t̂, then by (15) we have

∫ β1

α1

ψ+(s)ds ≤
2(1 + L)

μ
≤

∫ α1+m

α1

ψ+(s)ds,

and therefore β1 − α1 ≤ m < τ . If α1 < t̂, then by (15) we have

∫ β1

α1

ψ+(s)ds ≤
2(1 + L)

μ
≤

∫ t̂+m

t̂

ψ+(s)ds ≤
∫ α1+t̂+m

α1

ψ+(s)ds.

Hence, β1 − α1 ≤ t̂ + m < τ . Thus, it turns out that the beginning sentence of
Step 4 is true.

Step 5. If u(t) ≤ μ for any interval [α2, β2] ⊂ [t0, t0 + T ], then β2 − α2 ≤ 2eM/h.
In fact, since

u(t) =
f(t)

g(t)
y2(t), v(t) = x2(t) + u(t) and μ = min

{
v

2
,
kg2v

8h
2

}
,

we see that

(16) |x(t)| =
√
v(t)− u(t) ≥

√
v − μ ≥

√
v

2

and

(17) |y(t)| =
√

g(t)

f(t)
u(t) ≤

√
μ

k
≤

g

2h

√
v

2

for α2 ≤ t ≤ β2. Note that

y′(t)− h−(t)y(t) = − g(t)x(t)− h+(t)y(t)

for t ≥ t0. Then, using (16) and (17), we obtain

∣∣∣∣∣
(
exp

(
−
∫ t

t0

h−(s)ds

)
y(t)

)′∣∣∣∣∣ ≥ exp

(
−
∫ t

t0

h−(s)ds

)
(|g(t)||x(t)| − h+(t)|y(t)|)

≥
ge−M

2

√
v

2
> 0
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for α2 ≤ t ≤ β2. Hence, combining this with (17), we get

g

h

√
v

2
≥ |y(β2)|+ |y(α2)|

≥
∣∣∣∣∣exp

(
−
∫ β2

t0

h−(s)ds

)
y(β2)− exp

(
−
∫ α2

t0

h−(s)ds

)
y(α2)

∣∣∣∣∣
=

∣∣∣∣∣
∫ β2

α2

(
exp

(
−
∫ t

t0

h−(s)ds

)
y(t)

)′

dt

∣∣∣∣∣
=

∫ β2

α2

∣∣∣∣∣
(
exp

(
−
∫ t

t0

h−(s)ds

)
y(t)

)′∣∣∣∣∣ dt ≥ ge−M

2

√
v

2
(β2 − α2),

and therefore β2 − α2 ≤ 2eM/h. Thus, it turns out that the beginning sentence of
Step 5 is true.

Step 6. Let

Ji =

[
t0 + σ + (i− 1)

(
3eM

h
+ τ

)
, t0 + σ + i

(
3eM

h
+ τ

)]

for any i ∈ N. Then, for each i ∈ N, the length of Ji is 3e
M/h+ τ . We can divide

the interval [t0 + σ, t0 + T ] as follows:

[t0 + σ, t0 + T ] = J1 ∪ J2 ∪ · · · ∪ J[4/(μν)]+1.

Let us examine the motion of u(t) in the interval J1. It turns out that there exists
a t1 ∈ [t0 + σ, t0 + σ + τ ] ⊂ J1 such that u(t1) < μ/2. In fact, if u(t) ≥ μ/2 for
t ∈ [t0 + σ, t0 + σ + τ ] ⊂ [t0, t0 + T ], then by the conclusion of Step 4, we have

τ = t0 + σ + τ − (t0 + σ) = β1 − α1 < τ.

This is a contradiction. It also turns out that there exists a t2 ∈ [t0 + σ + τ, t0 +
σ+3eM/h+ τ ] ⊂ J1 such that u(t2) > μ. In fact, if u(t) ≤ μ for t ∈ [t0+σ+ τ, t0+
σ + 3eM/h+ τ ] ⊂ [t0, t0 + T ], then by the conclusion of Step 5, we have

3eM

h
= t0 + σ +

3eM

h
+ τ − (t0 + σ + τ ) = β2 − α2 ≤ 2eM

h
.

This is a contradiction. Hence, because of the continuity of u(t), there exists an
interval [α, β] ⊂ [t1, t2] such that u(α) = μ/2, u(β) = μ and

(18)
μ

2
≤ u(t) ≤ μ for α ≤ t ≤ β.

Hence, by (9) and (13) we have

μ

2
= u(β)− u(α) =

∫ β

α

u′(s)ds =

∫ β

α

(−ψ(s)u(s)− 2f(s)x(s)y(s))ds

≤
∫ β

α

(ψ−(s)v(s) + 2|f(s)x(s)y(s)|)ds ≤ μ

4
+ 2f

∫ β

α

|x(s)y(s)|ds.

Consequently,

μ

8f
≤

∫ β

α

|x(s)y(s)|ds.
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Using (13) again, we can estimate that

|x(t)| =
√
v(t)− u(t) < 1 and |y(t)| =

√
g(t)

f(t)
u(t) ≤

√
v(t)

k
<

1√
k

for t ≥ t0. We therefore conclude that

μ
√
k

8f
< β − α.

Step 7. From the conclusion of Step 6 with (9), (10), (14) and (18) it turns out
that

μν ≤ μ

2

∫ α+μ
√
k/(8f)

α

ψ+(s)ds ≤
μ

2

∫ β

α

ψ+(s)ds

≤
∫ β

α

ψ+(s)u(s)ds ≤
∫ β

α

(− v′(s) + 2e−(s) + ψ−(s))ds

= v(α)− v(β) +

∫ β

α

(2e−(s) + ψ−(s))ds ≤ v(α)− v(β) +
μν

4
.

Hence, we have

v(β)− v(α) ≤ −3μν

4
.

Using (9) and (14) again, we get

v(α)− v(t0 + σ) =

∫ α

t0+σ

v′(s)ds ≤
∫ α

t0+σ

(2e−(s) + ψ−(s))ds ≤
μν

4

and

v

(
t0 + σ +

3eM

h
+ τ

)
− v(β) =

∫ t0+σ+3eM/h+τ

β

v′(s)ds

≤
∫ t0+σ+3eM/h+τ

β

(2e−(s) + ψ−(s))ds ≤
μν

4
.

We therefore conclude that∫
J1

v′(s)ds = v

(
t0 + σ +

3eM

h
+ τ

)
− v(β) + v(β)− v(α) + v(α)− v(t0 + σ)

≤ μν

4
− 3μν

4
+

μν

4
= −μν

4
.

By means of the same process as in the proof of Steps 6 and 7, we see that∫
Ji

v′(s)ds ≤ −μν

4
for 1 ≤ i ≤ [4/(μν)] + 1,

and therefore

v(t0 + T )− v(t0 + σ) =

[4/(μν)]+1∑
i=1

∫
Ji

v′(s)ds ≤ −μν

4

([
4

μν

]
+ 1

)
< −1.

Hence, from (13) it follows that

v(t0 + T ) < v(t0 + σ)− 1 < 0.

This contradicts the fact that v(t) ≥ 0 for t ≥ t0. Thus, in case (b) as well as in
case (a), inequality (11) holds. The proof of Theorem 1 is thus complete. �
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3. Examples

We illustrate our main result with simple examples to which Coppel’s criterion
and Floquet theory cannot be applied. To present examples, we define a function
as follows: let r be a number satisfying 0 < r < 1 and let

p(t) =

⎧⎪⎪⎨
⎪⎪⎩

t

2− rn
+ 2(n− 1)

(
1− 1

2− rn

)
if 2(n− 1) ≤ t < 2n− rn,

t

rn
+ 2n

(
1− 1

rn

)
if 2n− rn ≤ t < 2n

for any n ∈ N. It is clear that the graph of p(t) is a broken line (see Figure 1(a)
below). As shown in Figure 1(b) below, the composite function sin(p(t)π) changes
sign, but it is not periodic and not even almost periodic. It is easy to check that
max{0, sin(p(t)π)} is an integrally positive function and max{0,− sin(p(t)π)} is an
integrable function.

Figure 1. (a) The graph of p(t) with r = 0.7; (b) the graph of
sin(p(t)π) with r = 0.7

Example 1. Consider system (1) with

(19) e(t) = 0, f(t) = g(t) = 1 and h(t) = sin(p(t)π).

Then the zero solution is uniformly asymptotically stable.

It is clear that f(t), g(t) and h+(t) are bounded and g(t)/f(t) is differentiable for
t ≥ 0, and assumption (i) is satisfied. Assumptions (ii) and (iii) are also satisfied.
In fact, taking ψ(t) = 2h(t) into account, we see that∫ ∞

0

e−(t)dt = 0,

∫ ∞

0

h−(t)dt <
∞∑
i=1

ri =
r

1− r
,

∫ ∞

0

ψ−(t)dt <
2r

1− r

and ψ+(t) is integrally positive. Thus, by virtue of Theorem 1, we conclude that
the zero solution is uniformly asymptotically stable.

Example 2. Consider system (1) with

(20) e(t) = h(t) = sin(p(t)π), f(t) = 1 and g(t) =
1 + t

2 + t
.

Then the zero solution is uniformly asymptotically stable.
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Since ψ(t) = 2h(t) + 1/((1 + t)(2 + t)), it turns out that

ψ+(t) > 2h+(t) and ψ−(t) < 2h−(t)

for t ≥ 0. Hence, it is easy to confirm that all of the assumptions in Theorem 1 are
satisfied. We omit the details.
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