Hitting time in regular sets and logarithm law for rapidly mixing dynamical systems
HTML articles powered by AMS MathViewer
- by Stefano Galatolo
- Proc. Amer. Math. Soc. 138 (2010), 2477-2487
- DOI: https://doi.org/10.1090/S0002-9939-10-10275-5
- Published electronically: March 4, 2010
- PDF | Request permission
Abstract:
We prove that if a system has superpolynomial (faster than any power law) decay of correlations (with respect to Lipschitz observables), then the time $\tau (x,S_{r})$ is needed for a typical point $x$ to enter for the first time a set $S_{r}=\{x:f(x)\leq r\}$ which is a sublevel of a Lipschitz function $f$ scales as $\frac {1}{\mu (S_{r})}$ i.e., \begin{equation*} \underset {r\rightarrow 0}{\lim }\frac {\log \tau (x,S_{r})}{-\log r}=\underset {r\rightarrow 0}{\lim }\frac {\log \mu (S_{r})}{\log r}. \end{equation*} This generalizes a previous result obtained for balls. We will also consider relations with the return time distributions, an application to observed systems and to the geodesic flow in negatively curved manifolds.References
- L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys. 219 (2001), no. 2, 443–463. MR 1833809, DOI 10.1007/s002200100427
- N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math. 122 (2001), 1–27. MR 1826488, DOI 10.1007/BF02809888
- Dmitry Dolgopyat, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc. 356 (2004), no. 4, 1637–1689. MR 2034323, DOI 10.1090/S0002-9947-03-03335-X
- Mirko Degli Esposti and Stefano Galatolo, Recurrence near given sets and the complexity of the Casati-Prosen map, Chaos Solitons Fractals 23 (2005), no. 4, 1275–1284. MR 2097708, DOI 10.1016/j.chaos.2004.06.075
- Freitas, A.C.M., Freitas, J.M., Todd, M., Hitting time statistics and extreme value theory, Prob. Th. and Related Fields, to appear.
- Stefano Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett. 14 (2007), no. 5, 797–805. MR 2350125, DOI 10.4310/MRL.2007.v14.n5.a8
- Galatolo, S., Peterlongo, P., Long hitting time, slow decay of correlations and arithmetical properties, preprint arXiv:0801.3109.
- Stefano Galatolo, Dimension via waiting time and recurrence, Math. Res. Lett. 12 (2005), no. 2-3, 377–386. MR 2150891, DOI 10.4310/MRL.2005.v12.n3.a8
- Stefano Galatolo, Hitting time and dimension in axiom A systems, generic interval exchanges and an application to Birkoff sums, J. Stat. Phys. 123 (2006), no. 1, 111–124. MR 2225238, DOI 10.1007/s10955-006-9041-y
- Stefano Galatolo and Dong Han Kim, The dynamical Borel-Cantelli lemma and the waiting time problems, Indag. Math. (N.S.) 18 (2007), no. 3, 421–434. MR 2373690, DOI 10.1016/S0019-3577(07)80031-0
- Gorodnik, A., Shah, A.N., Khinchin theorem for integral points on quadratic varieties, preprint arXiv:0804.3530, 2008.
- Richard Hill and Sanju L. Velani, The ergodic theory of shrinking targets, Invent. Math. 119 (1995), no. 1, 175–198. MR 1309976, DOI 10.1007/BF01245179
- Dong Han Kim and Byoung Ki Seo, The waiting time for irrational rotations, Nonlinearity 16 (2003), no. 5, 1861–1868. MR 1999584, DOI 10.1088/0951-7715/16/5/318
- D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math. 138 (1999), no. 3, 451–494. MR 1719827, DOI 10.1007/s002220050350
- Dong Han Kim and Stefano Marmi, The recurrence time for interval exchange maps, Nonlinearity 21 (2008), no. 9, 2201–2210. MR 2430668, DOI 10.1088/0951-7715/21/9/016
- N. Haydn, Y. Lacroix, and S. Vaienti, Hitting and return times in ergodic dynamical systems, Ann. Probab. 33 (2005), no. 5, 2043–2050. MR 2165587, DOI 10.1214/009117905000000242
- Carlangelo Liverani, On contact Anosov flows, Ann. of Math. (2) 159 (2004), no. 3, 1275–1312. MR 2113022, DOI 10.4007/annals.2004.159.1275
- François Maucourant, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math. 152 (2006), 143–155. MR 2214457, DOI 10.1007/BF02771980
- Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications. MR 1489237, DOI 10.7208/chicago/9780226662237.001.0001
- Rousseau, J., Saussol, B., Poincaré recurrence for observations, preprint arXiv:0807.0970.
- Dennis Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math. 149 (1982), no. 3-4, 215–237. MR 688349, DOI 10.1007/BF02392354
Bibliographic Information
- Stefano Galatolo
- Affiliation: Dipartimento di Matematica Applicata, Universita di Pisa, via Buonarroti 1, Pisa, Italy
- Email: s.galatolo@docenti.ing.unipi.it
- Received by editor(s): June 18, 2009
- Received by editor(s) in revised form: October 12, 2009
- Published electronically: March 4, 2010
- Communicated by: Bryna Kra
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2477-2487
- MSC (2010): Primary 37A25, 37C45, 37D40, 37A99
- DOI: https://doi.org/10.1090/S0002-9939-10-10275-5
- MathSciNet review: 2607877